首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

2.
Although striking changes have been documented in plant and animal phenology over the past century, less is known about how the fungal kingdom's phenology has been changing. A few recent studies have documented changes in fungal fruiting in Europe in the last few decades, but the geographic and taxonomic extent of these changes, the mechanisms behind these changes, and their relationships to climate are not well understood. Here, we analyzed herbarium data of 274 species of fungi from Michigan to test the hypotheses that fruiting times of fungi depend on annual climate and that responses depend on taxonomic and functional groups. We show that the fungal community overall fruits later in warmer and drier years, which has led to a shift toward later fruiting dates for autumn‐fruiting species, consistent with existing evidence. However, we also show that these effects are highly variable among species and are partly explained by basic life‐history characteristics. Resulting differences in climate sensitivities are expected to affect community structure as climate changes. This study provides a unique picture of the climate dependence of fungal phenology in North America and an approach for quantifying how individual species and broader fungal communities will respond to ongoing climate change.  相似文献   

3.
Abstract. Both spatial and temporal variability in recruitment probabilities can lead to coexistence in gap-phase regenerating forests which would otherwise tend to be dominated by fewer species. Using modified Markov models, the potential roles were examined of temporal variability and differential mortality rates among species in the dynamics of a forest for which spatial variability has been rejected as a strong factor leading to coexistence. Differential longevity modifies results obtained from a simple Markov model: it exerts a strong influence on the equilibrium species composition, on the rate of community change and on the time a community requires to reach equilibrium. Simulations with varying transition probabilities mimicked a changing climate, producing four main results: 1. Unless the duration of climate states is very long or very short, forest composition is in a continual state of disequilibrium. 2. Species vary in their response times to changing climate. 3. The mean abundance of each species under a varying climate scenario is different from that expected from the mean climate state. 4. The rare, long-lived species was favored by climatic fluctuations at the expense of more common shorter lived species. Differential mortality rates provide an equilibrium-based mechanism for coexistence, and temporally fluctuating recruitment probabilities a non-equilibrium mechanism. Composition could be maintained by differential longevity among species and climatic fluctuations allowing periodic recruitment of the less common species.  相似文献   

4.
We draw on our research experiences with municipal workers in Alaska, where the impacts of climate change are already extensive, to examine adaptation and related concepts, such as resilience and vulnerability, which have become widely used in science and policy formulation for addressing climate change despite also being subject to multiple critiques. We use local people’s experiences with environmental challenges to illustrate limitations of the climate change adaptation paradigm, and offer the additional concept of “community work” — analogous to niche construction — as a counterpart to the adaptive process at the community level. Whereas climate change adaptation insinuates active and purposive change, the reality we have repeatedly encountered is that people in these communities focus not on changing but on building and maintaining capacity and achieving stability: keeping aging and overtaxed infrastructure running while also working toward improving quality of life and services in their communities. We discuss how these findings are congruent with recent calls to better situate climate change adaptation policy in the context of community development, and argue that scientists and policymakers need to understand this context of community work to avoid the pitfalls that potentially accompany the adaptation paradigm.  相似文献   

5.
Predicting phenology by integrating ecology,evolution and climate science   总被引:4,自引:0,他引:4  
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology – the timing of life‐history events. Phenology has well‐demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species’ reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.  相似文献   

6.
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long‐term, large‐scale, and cross‐taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large‐scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large‐scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long‐term life‐history data for natural populations of seven primate species that have been studied for 29–52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.  相似文献   

7.
Invasive plants pose a significant threat to the integrity and biodiversity of native systems. Weed risk assessment and management provides a framework for assessing this threat. However, relatively little attention has been paid to the threat posed to biodiversity by invasive plants in a rapidly changing climate. This paper aims to estimate the impacts of climate change on exotic plant habitats, and incorporates elements of dispersal to develop a management index for identifying invasive plant threat under climate change. The spatial distribution of habitat suitability is modelled at the landscape scale for multiple exotic plant species under current climate and a climate change scenario for the year 2030. Expert opinion of the dominant dispersal mechanisms and weed status is used to model relative dispersal threat of each exotic plant species. These pattern and process outputs are integrated to create a multi-species management priority layer in an effort to synthesise the inherently complex outputs from multiple models of multiple species. The overall multi-species management index thus combines pattern and process to identify geographic locations at greatest threat from invasion under climate change.  相似文献   

8.
This study examined critical impacts of climate change on Inuit diet and nutritional health in four Inuit communities in the Inuvialuit Settlement Region, Western Arctic, Canada. The first objective was to combine data from community observation studies and dietary interview studies to determine potential climate change impacts on nutritional quality. The second objective was to address the scale of data collection and/or availability to compare local versus regional trends, and identify implications for adaptation planning. Information was compiled from 5 reports (4 community reports and 1 synthesis report) of climate change observations, impacts and adaptations in 12 Inuit communities (2005–2006), and from a dietary report of food use from 18 Inuit communities (1997–2000). Changing access to, availability of, quality of, and ability to use traditional food resources has implications for quality of diet. Nutritional implications of lower traditional food use include likely reductions in iron, zinc, protein, vitamin D, and omega-3 fatty acids, among others. The vulnerability of each community to changing food security is differentially influenced by a range of factors, including current harvesting trends, levels of reliance on individual species, opportunities for access to other traditional food species, and exposure to climate change hazards. Understanding linkages between climate change and traditional food security provides a basis for strengthening adaptive capacity and determining effective adaptation options to respond to future change.  相似文献   

9.
Studies on the impact of climate change on the distributions of bird species in Europe have largely focused on one season at a time, especially concerning summer breeding ranges. We investigated whether migratory bird species show consistent range shifts over the past 55 yr in both breeding and wintering areas or if these shifts are independent. We then analyzed whether patterns in changing migration distances of Finnish breeding birds could be explained by habitat use, phylogeny or body size. We used long‐term datasets from the Finnish ringing centre to analyze the mean wintering latitudes of 29 species of Finnish breeding birds, then used breeding distribution data to make predictions as to whether certain species were migrating shorter or longer distances based on the comparative shifts in the wintering and breeding grounds. Our data reveal species‐specific differences in changing migration distances. We show that for many species, long‐term shifts in wintering ranges have not followed the same patterns as those in the breeding range, leading to differences in migration distances over time. We conclude that species are not adjusting predictably to climate change in their wintering grounds, leading to changing migration distances in some, but not all, species breeding in Finland. This research fills an important gap in the current climate change biology literature, focusing on individuals’ entire life histories and revealing new complexities in range shift patterns.  相似文献   

10.
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species‐specific responses are resulting in community‐wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm‐adapted species. To do this, we quantified changes in community composition using a functional index – the Community Temperature Index (CTI) – which measures the balance between low‐ and high‐temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (= 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22‐year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm‐adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.  相似文献   

11.
The literature on the response of insect species to the changing environments experienced along altitudinal gradients is diverse and widely dispersed. There is a growing awareness that such responses may serve as analogues for climate warming effects occurring at a particular fixed altitude or latitude over time. This review seeks, therefore, to synthesise information on the responses of insects and allied groups to increasing altitude and provide a platform for future research. It focuses on those functional aspects of insect biology that show positive or negative reaction to altitudinal changes but avoids emphasising adaptation to high altitude per se. Reactions can be direct, with insect characteristics or performance responding to changing environmental parameters, or they can be indirect and mediated through the insect's interaction with other organisms. These organisms include the host plant in the case of herbivorous insects, and also competitor species, specific parasitoids, predators and pathogens. The manner in which these various factors individually and collectively influence the morphology, behaviour, ecophysiology, growth and development, survival, reproduction, and spatial distribution of insect species is considered in detail. Resultant patterns in the abundance of individual species populations and of community species richness are examined. Attempts are made throughout to provide mechanistic explanations of trends and to place each topic, where appropriate, into the broader theoretical context by appropriate reference to key literature. The paper concludes by considering how montane insect species will respond to climate warming.  相似文献   

12.
Global climate change is known to affect the assembly of ecological communities by altering species' spatial distribution patterns, but little is known about how climate change may affect community assembly by changing species' temporal co‐occurrence patterns, which is highly likely given the widely observed phenological shifts associated with climate change. Here, we analyzed a 29‐year phenological data set comprising community‐level information on the timing and span of temporal occurrence in 11 seasonally occurring animal taxon groups from 329 local meteorological observatories across China. We show that widespread shifts in phenology have resulted in community‐wide changes in the temporal overlap between taxa that are dominated by extensions, and that these changes are largely due to taxa's altered span of temporal occurrence rather than the degree of synchrony in phenological shifts. Importantly, our findings also suggest that climate change may have led to less phenological mismatch than generally presumed, and that the context under which to discuss the ecological consequences of phenological shifts should be expanded beyond asynchronous shifts.  相似文献   

13.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

14.
Geographical range dynamics are driven by the joint effects of abiotic factors, human ecosystem modifications, biotic interactions and the intrinsic organismal responses to these. However, the relative contribution of each component remains largely unknown. Here, we compare the contribution of life-history attributes, broad-scale gradients in climate and geographical context of species’ historical ranges, as predictors of recent changes in area of occupancy for 116 terrestrial British breeding birds (74 contractors, 42 expanders) between the early 1970s and late 1990s. Regional threat classifications demonstrated that the species of highest conservation concern showed both the largest contractions and the smallest expansions. Species responded differently to climate depending on geographical distribution—northern species changed their area of occupancy (expansion or contraction) more in warmer and drier regions, whereas southern species changed more in colder and wetter environments. Species with slow life history (larger body size) tended to have a lower probability of changing their area of occupancy than species with faster life history, whereas species with greater natal dispersal capacity resisted contraction and, counterintuitively, expansion. Higher geographical fragmentation of species'' range also increased expansion probability, possibly indicating a release from a previously limiting condition, for example through agricultural abandonment since the 1970s. After accounting statistically for the complexity and nonlinearity of the data, our results demonstrate two key aspects of changing area of occupancy for British birds: (i) climate is the dominant driver of change, but direction of effect depends on geographical context, and (ii) all of our predictors generally had a similar effect regardless of the direction of the change (contraction versus expansion). Although we caution applying results from Britain''s highly modified and well-studied bird community to other biogeographic regions, our results do indicate that a species'' propensity to change area of occupancy over decadal scales can be explained partially by a combination of simple allometric predictors of life-history pace, average climate conditions and geographical context.  相似文献   

15.
Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well‐studied organisms have been instrumental for understanding climate‐change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support (‘consensus view’) for a claim increased and between‐researcher variability in support (‘expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.  相似文献   

16.
The Arabidopsis information portal (AIP), a resource expected to provide access to all community data and combine outputs into a single user-friendly interface, has emerged from community discussions over the last 23 months. These discussions began during two closely linked workshops in early 2010 that established the International Arabidopsis Informatics Consortium (IAIC). The design of the AIP will provide core functionality while remaining flexible to encourage multiple contributors and constant innovation. An IAIC-hosted Design Workshop in December 2011 proposed a structure for the AIP to provide a framework for the minimal components of a functional community portal while retaining flexibility to rapidly extend the resource to other species. We now invite broader participation in the AIP development process so that the resource can be implemented in a timely manner.  相似文献   

17.
We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.  相似文献   

18.
Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP). A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming.  相似文献   

19.
Aims Biogeographical evidence suggests a strong link between climate and patterns of species diversity, and climate change is known to cause range shifts. However, there is little understanding of how shifts affect community composition and we lack empirical evidence of recent impacts of climate change on the diversity of vertebrates. Using a long‐term comprehensive dataset on bird abundance, we explore recent patterns of change in different components of species diversity and avian communities, and postulate a process to explain the observed changes in diversity and specialization. Location Britain. Methods We used Breeding Bird Survey data for Britain from 1994 to 2006 to calculate site‐specific diversity and community specialization indices. We modelled these indices using generalized additive models to examine the relationship between local climate and spatial and temporal trends in community metrics and the relationship between changes in diversity and specialization. Results Local temperature was positively associated with alpha diversity, which increased over the study period, supporting empirical and theoretical predictions of the effect of climate warming. Diversity increased in all habitats, but the rate of increase was greatest in upland areas. However, temperature was negatively associated with community specialization indices, which declined over the same period. Our modelling revealed a nonlinear relationship between community specialization and species diversity. Main conclusions Our models of diversity and specialization provide stark empirical evidence for a link between warming climate and community homogenization. Over a 13‐year period of warming temperatures, diversity indices increased while average community specialization decreased. We suggest that the observed diversity increases were most likely driven by range expansion of generalist species and that future warming is likely to increase homogenization of community structure. When assessed in combination, diversity and specialization measures provide a powerful index for monitoring the impacts of climate change.  相似文献   

20.
The rate at which climate is changing in northern latitudes presents a significant threat to bird populations that rely on boreal forests. Alterations in the distributions of trees and other plants as a result of warming will alter the habitat suitability of vast regions of boreal and hemiboreal forests. Climate change associated habitat alterations along with range expansions of bird species are likely to have substantial consequences on avian communities and biodiversity. Identifying factors that contribute to species coexistence and community assembly processes at local and regional scales will facilitate predictions about the impact of climate change on avian communities in these forest ecosystems. This paper provides a comprehensive review of historic and current theories of community ecology dynamics providing a theoretical synthesis that links the evolution of species traits at the individual level, the dynamics of species interactions, and the overall maintenance of biodiversity. Integration of these perspectives is necessary to provide the scientific means to face growing environmental challenges in boreal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号