首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cassava is a valued calorific source to millions of Africans who eat it daily and a vital staple for their food security. One of the key constraints to this crop is whiteflies which are both a vector of viral diseases and a direct pest. Although the African cassava whitefly is known to cause physical damage on cassava with considerable tuberous yield loss, a recent whitefly outbreak caused unusually severe damage, which prompted the current reported investigation. Molecular identification of whitefly adults sampled from the affected cassava field revealed the presence of a new whitefly species, Paraleyrodes bondari. This communication is the first report of the occurrence of P. bondari on cassava in Uganda.  相似文献   

2.
The begomovirus infection in plants has been widely reported throughout the world. The chief carrier of this virus is the whitefly. All of the reports, however, concern plants that grow at a stumpy height from the ground; moreover, the whitefly transmits the begomovirus infection to plants at this low height only by residing under their leaves. To date, there has been no record of the begomovirus infection in trees as the prevalence of the whitefly at tree level is unlikely. For this reason, this study focuses on and presents the first report of airborne begomovirus infection in an ornamental tree—the Melia azedarach (or Pride of India) found on the Indian subcontinent.  相似文献   

3.
Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.  相似文献   

4.
5.
Encarsia sophia (Girault and Dodd) is an autoparasitoid in the hymenopteran family Aphelinidae. The females develop as primary parasitoids on whitefly nymphs (primary hosts), whereas the males develop as hyperparasitoids on their own species or on other primary parasitoid species (secondary hosts). The autoparasitoids not only parasitise whiteflies but also kill them with strong host-feeding capacity. In this study, female and male E. sophia were reared on the primary hosts Trialeurodes vaporariorum and Bemisia tabaci ‘Q’, and the host-feeding and parasitism of wasps on both whitefly species were determined for the four possible different mating combinations: (i) E. sophia females reared on B. tabaci (ESF-BT) mated with E. sophia males from B. tabaci (ESM-BT), (ii) E. sophia females reared on T. vaporariorum (ESF-TV) mated with E. sophia males from T. vaporariorum (ESM-TV), (iii) ESF-BT mated with ESM-TV, and (iv) ESF-TV mated with ESM-BT. ESF-TV mated with ESM-TV killed the largest percentage of whitefly nymphs through host feeding. The ESF-TV with larger body size mating with larger ESM-TV killed more whitefly nymphs through host feeding than those mating with smaller ESM-BT. Whether B. tabaci or T. vaporariorum were used as hosts, ESF-TV mated with ESM-TV and ESM-BT and ESF-BT mated with ESM-BT significantly parasitised more whitefly nymphs than ESF-BT mated with ESM-TV. In general, ESF-BT mated with ESM-TV killed significantly fewer whitefly nymphs through parasitism and host feeding than the other three mating combinations on both whitefly species. These results indicated that the performance of autoparasitoids on insect pests was not only dependent on females but was also affected by mating with males from different primary host species.  相似文献   

6.
Intracellular symbionts in insects often have reduced genomes. Host acquisition of genes from bacteria is an important adaptation that supports symbionts. However, the function of horizontally transferred genes in insect symbiosis remains largely unclear. The primary symbiont Portiera housed in bacteriocytes lacks pantothenate synthesis genes: panB and panC, which is presumably complemented by a fused gene panB-panC (hereafter panBC) horizontally transferred from bacteria in Bemisia tabaci MEAM1. We found panBC in many laboratory cultures, and species of B. tabaci shares a common evolutionary origin. We demonstrated that complementation with whitefly panBC rescued E. coli pantothenate gene knockout mutants. Portiera elimination decreased the pantothenate level and PanBC abundance in bacteriocytes, and reduced whitefly survival and fecundity. Silencing PanBC decreased the Portiera titer, reduced the pantothenate level, and decreased whitefly survival and fecundity. Supplementation with pantothenate restored the symbiont titer, PanBC level, and fitness of RNAi whiteflies. These data suggest that pantothenate synthesis requires cooperation and coordination of whitefly PanBC expression and Portiera. This host–symbiont co-regulation was mediated by the pantothenate level. Our findings demonstrated that pantothenate production, by the cooperation of a horizontally acquired, fused bacteria gene and Portiera, facilitates the coordination of whitefly and symbiont fitness. Thus, this study extends our understanding on the basis of complex host–symbiont interactions.Subject terms: Applied microbiology, Functional genomics  相似文献   

7.
The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.  相似文献   

8.
Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.  相似文献   

9.
Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera: Thripidae) are an example of omnivores that become predatory when the quality of their host plant is low. Western flower thrips larvae usually feed on leaf tissue and on plant pollen, but may also attack eggs of predatory mites, their natural enemies, and eggs of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), one of their competitors. Here, we present evidence that western flower thrips larvae prey on Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), another competitor for plant tissue. We tested this on two host plant species, cucumber (Cucumis sativa L.), considered a host plant of high quality for western flower thrips, and sweet pepper (Capsicum annuum L.), a relatively poor quality host. We found that western flower thrips killed and fed especially on whitefly crawlers and that the incidence of feeding did not depend on host-plant species. The developmental rate and oviposition rate of western flower thrips was higher on a diet of cucumber leaves with whitefly crawlers than on cucumber leaves without whitefly crawlers, suggesting that thrips do not just kill whiteflies to reduce competition, but utilize whitefly crawlers as food.  相似文献   

10.
《Journal of Asia》2020,23(4):1181-1187
The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pests of greenhouse crops. The intensive use of chemical insecticides has resulted in insecticide resistance in T. vaporariorum and the critical level of pesticides residue in crops. It is therefore necessary to develop new control methods based on ecological pest management. The present study was designed to control greenhouse whitefly by finding and using insect repellent wavelengths. The repellent wavelength experiment was conducted by a two-way phototactic apparatus given a choice between darkness and visible wavelength spectrum from violet (380–450 nm) to red (620–750 nm). The phototactic responses of the greenhouse whitefly were then investigated in a four-way phototactic apparatus given a choice between two light regimes, light-emitting diode (LED) and sunlight. The results indicated that the lowest (69.2%) and highest (97.8%) number of whiteflies were attracted to violet and orange (590–625 nm) spectra, respectively. In addition, the present study indicated a significant attraction of T. vaporariorum adults to sunlight compared with LED. Furthermore, the eggplants grown under growth LEDs showed a significantly higher growth rate than the plants grown under sunlight. These findings suggest that this type of LED not only has positive effects on plant growth but it also has a repellent activity on T. vaporariorum adults, leading us to develop an effective behavioral control of the greenhouse whitefly.  相似文献   

11.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an important pest of field and greenhouse crops of horticultural and ornamental plants. In integrated pest management programs its control is mainly based on the release of biological control agents and application of chemical insecticides. Neonicotinoids are relatively new chemicals currently applied for the chemical control of T. vaporariorum. However, cases of development of insecticide resistance to neonicotinoids have already been reported. The state of resistance to neonicotinoid insecticides for populations of the greenhouse whitefly in Greece is currently unknown. The objective of our study was to screen a number of whitefly populations for resistance to the neonicotinoids imidacloprid and thiacloprid. Seven whitefly populations were collected from tomato greenhouse crops from different areas of central and northern Greece. LC50 values were estimated for all populations following the method proposed by the Insecticide Resistance Action Committee (IRAC). The development of resistance to both neonicotinoids was confirmed for all tested populations with resistance ratios ranging from 1.5 to 4.4-fold and from 1.4 to 12.2-fold for imidacloprid and thiacloprid, respectively. We discuss our results with regard to the development of neonicotinoid resistance in T. vaporariorum populations and its implications for whitefly control.  相似文献   

12.
Whiteflies (Hemiptera: Aleyrodidae) are sap-sucking insect pests, and some cause serious damage in agricultural crops by direct feeding and by transmitting plant viruses. Whiteflies maintain close associations with bacterial endosymbionts that can significantly influence their biology. All whitefly species harbor a primary endosymbiont, and a diverse array of secondary endosymbionts. In this study, we surveyed 34 whitefly populations collected from the states of Sao Paulo, Bahia, Minas Gerais and Parana in Brazil, for species identification and for infection with secondary endosymbionts. Sequencing the mitochondrial Cytochrome Oxidase I gene revealed the existence of five whitefly species: The sweetpotato whitefly Bemisia tabaci B biotype (recently termed Middle East-Asia Minor 1 or MEAM1), the greenhouse whitefly Trialeurodes vaporariorum, B. tabaci A biotype (recently termed New World 2 or NW2) collected only from Euphorbia, the Acacia whitefly Tetraleurodes acaciae and Bemisia tuberculata both were detected only on cassava. Sequencing rRNA genes showed that Hamiltonella and Rickettsia were highly prevalent in all MEAM1 populations, while Cardinium was close to fixation in only three populations. Surprisingly, some MEAM1 individuals and one NW2 population were infected with Fritschea. Arsenopnohus was the only endosymbiont detected in T. vaporariorum. In T. acaciae and B. tuberculata populations collected from cassava, Wolbachia was fixed in B. tuberculata and was highly prevalent in T. acaciae. Interestingly, while B. tuberculata was additionally infected with Arsenophonus, T. acaciae was infected with Cardinium and Fritschea. Fluorescence in situ hybridization analysis on representative individuals showed that Hamiltonella, Arsenopnohus and Fritschea were localized inside the bacteriome, Cardinium and Wolbachia exhibited dual localization patterns inside and outside the bacteriome, and Rickettsia showed strict localization outside the bacteriome. This study is the first survey of whitely populations collected in Brazil, and provides further insights into the complexity of infection with secondary endosymionts in whiteflies.  相似文献   

13.
Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects.  相似文献   

14.
Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.  相似文献   

15.
B型烟粉虱对23种寄主植物适应度的评估和聚类分析   总被引:2,自引:0,他引:2  
安新城  郭强  胡琼波 《生态学报》2011,31(11):3150-3155
本文利用前期开发的两个寄主植物适应度评估模型对B型烟粉虱能够完成发育的23种寄主进行了寄主适应度评估,并对评估结果进行了聚类分析,分析结果显示供试烟粉虱种群存在明显的寄主偏好性,黄瓜与甘蓝为嗜好寄主,繁殖力大,若虫成活率高,非常有利于烟粉虱的种群发育;而其它寄主在营养状况、物理性状及次生化合物的综合作用下,烟粉虱的寄主植物适应度变化较大且整体低于嗜好寄主,结果暗示烟粉虱的寄主生态位可能存在从核心到周缘的分层现象。比较了两个评估模型的分析结果,虽然在低层聚类中存在差异,但高层聚类的结果趋于一致。  相似文献   

16.
17.
The biology of the arrhenotokous autoparasitoid,Encarsia pergandiella Howard, was studied in the laboratory on the silverleaf whitefly,Bemisia argentifolii Bellows & Perring. Egg to adult development of parasitoid females averaged ca. 14 days at about 25.3+0.2?C regardless of whether the whitefly host was reared on tomato, eggplant or squash. While all instars ofB. argentifolii were accepted for primary parasitization, a greater percentage of third and fourth instars were parasitized. Mortality of whitefly nymphs in the absence of parasitization did not differ among instars and averaged about 35%. Second instar to pupal parasitoid females were accepted for secondary parasitization although a greater percent of pupal females were parasitized. About 40% of immatureE. pergandiella females more than 4 days old died in the absence of secondary parasitization when exposed to adultE. pergandiella females.  相似文献   

18.
19.
Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.  相似文献   

20.
Intraguild predation (IGP) takes place when natural enemies that use similar resources attack each other. The impact of IGP on biological control can be significant if the survival of natural enemy species is disrupted. In the present study, we assessed whether Geocoris punctipes (Hemiptera: Lygaeidae) engages in IGP on Eretmocerus eremicus (Hymenoptera: Aphelinidae) while developing on whitefly nymphs of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). In choice and non-choice tests, we exposed G. punctipes to parasitized and non-parasitized whitefly nymphs. We found that G. punctipes does practice IGP on E. eremicus. However, choice tests assessing G. punctipes consumption revealed a significant preference for non-parasitized T. vaporariorum nymphs. Subsequently, we investigated whether E. eremicus females modify their foraging behavior when exposed to conditions involving IGP risk. To assess this, we analyzed wasp foraging behavior under the following treatments: i) whitefly nymphs only (control = C), ii) whitefly nymphs previously exposed to a predator ( = PEP) and, iii) whitefly nymphs and presence of a predator ( = PP). In non-choice tests we found that E. eremicus did not significantly modify its number of attacks, attack duration, oviposition duration, or behavior sequences. However, E. eremicus oviposited significantly more eggs in the PEP treatment. In the PP treatment, G. punctipes also preyed upon adult E. eremicus wasps, significantly reducing their number of ovipositions and residence time. When the wasps were studied under choice tests, in which they were exposed simultaneously to all three treatments, the number of attacks and frequency of selection were similar under all treatments. These results indicate that under IGP risk, E. eremicus maintains several behavioral traits, but can also increase its number of ovipositions in the presence of IG-predator cues. We discuss these findings in the context of population dynamics and biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号