首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Evolutionary genomics of pathogenic bacteria   总被引:15,自引:0,他引:15  
Complete genome sequences are now available for multiple strains of several bacterial pathogens and comparative analysis of these sequences is providing important insights into the evolution of bacterial virulence. Recently, DNA microarray analysis of many strains of several pathogenic species has contributed to our understanding of bacterial diversity, evolution and pathogenesis. Comparative genomics has shown that pathogens such as Escherichia coli, Helicobacter pylori and Staphylococcus aureus contain extensive variation in gene content whereas Mycobacterium tuberculosis nucleotide divergence is very limited. Overall, these approaches are proving to be a powerful means of exploring bacterial diversity, and are providing an important framework for the analysis of the evolution of pathogenesis and the development of novel antimicrobial agents.  相似文献   

3.
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.  相似文献   

4.
Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future.  相似文献   

5.
Invasional 'meltdown' on an oceanic island   总被引:11,自引:0,他引:11  
Islands can serve as model systems for understanding how biological invasions affect community structure and ecosystem function. Here we show invasion by the alien crazy ant Anoplolepis gracilipes causes a rapid, catastrophic shift in the rain forest ecosystem of a tropical oceanic island, affecting at least three trophic levels. In invaded areas, crazy ants extirpate the red land crab, the dominant endemic consumer on the forest floor. In doing so, crazy ants indirectly release seedling recruitment, enhance species richness of seedlings, and slow litter breakdown. In the forest canopy, new associations between this invasive ant and honeydew‐secreting scale insects accelerate and diversify impacts. Sustained high densities of foraging ants on canopy trees result in high population densities of host‐generalist scale insects and growth of sooty moulds, leading to canopy dieback and even deaths of canopy trees. The indirect fallout from the displacement of a native ‘keystone’ species by an ant invader, itself abetted by introduced/cryptogenic mutualists, produces synergism in impacts to precipitate invasional ‘meltdown’ in this system.  相似文献   

6.
Reciprocal questions often frame studies of the evolution of developmental mechanisms. How can species share similar developmental genetic toolkits but still generate diverse life forms? Conversely, how can similar forms develop from different toolkits? Genomics bridges the gap between evolutionary and developmental biology, and can help answer these evo-devo questions in several ways. First, it informs us about historical relationships, thus orienting the direction of evolutionary diversification. Second, genomics lists all toolkit components, thereby revealing contraction and expansion of the genome and suggesting mechanisms for evolution of both developmental functions and genome architecture. Finally, comparative genomics helps us to identify conserved non-coding elements and their relationship to genome architecture and development.  相似文献   

7.
8.
9.
A unique combination of disciplines is emerging--evolutionary and ecological functional genomics--which focuses on the genes that affect ecological success and evolutionary fitness in natural environments and populations. Already this approach has provided new insights that were not available from its disciplinary components in isolation. However, future advances will necessitate the re-engineering of scientific attitudes, training and institutions, to achieve extensive multidisciplinarity.  相似文献   

10.
Evolutionary genomics of lactic acid bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

11.
12.
The diversity, origin, and evolution of chromoviruses in Eukaryota were examined using the massive amount of genome sequence data for different eukaryotic lineages. A surprisingly large number of novel full-length chromoviral elements were found, greatly exceeding the number of the known chromoviruses. These new elements are mostly structurally intact and highly conserved. Chromoviruses in the key Amniota lineage, the reptiles, have been analyzed by PCR to explain their evolutionary dynamics in amniotes. Phylogenetic analyses provide evidence for a novel centromere-specific chromoviral clade that is widespread and highly conserved in all seed plants. Chromoviral diversity in plants, fungi, and vertebrates, as shown by phylogenetic analyses, was found to be much greater than previously expected. The age of plant chromoviruses has been significantly extended by finding their representatives in the most basal plant lineages, the green and the red algae. The evolutionary origin of chromoviruses has been found to be no earlier than in Cercozoa. The evolutionary history and dynamics of chromoviruses can be explained simply by strict vertical transmission in plants, followed by more complex evolution in fungi and in Metazoa. The currently available data clearly show that chromoviruses indeed represent the oldest and the most widespread clade of Metaviridae.  相似文献   

13.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

14.
15.
Biologists have until now conceded that bacterial gene transfer to multicellular animals is relatively uncommon in Nature. A new study showing promiscuous insertions of bacterial endosymbiont genes into invertebrate genomes ushers in a shift in this paradigm.  相似文献   

16.
Evolutionary genomics: reading the bands   总被引:4,自引:0,他引:4  
The human genome is not a uniform structure but, instead, is a mosaic of bands. Some of these bands can be seen by the eye. Stained with Giemsa and viewed under the microscope each human chromosome has a prototypical pattern of light and dark bands (G and R bands respectively). Other bands are not so easily viewed. The human genome is, for example, a mosaic of isochores, blocks of DNA within which the proportion of the bases G and C at silent sites (introns, third positions in codons, intergene spacer) is fairly uniform. Recent work by Matassi and colleagues(1) has revealed what might be a new and unexpected banding pattern. They have found that the genes which are close together on the chromosome have similar rates of evolution. BioEssays 22:105-107, 2000.  相似文献   

17.
海洋岛屿生物多样性保育研究进展   总被引:6,自引:0,他引:6  
海洋岛屿生态系统因具有明显的海域地理隔离而区别于陆地生态系统,被誉为生物地理与进化生态学研究的"天然实验室".陆地或其它邻近岛屿的种源物种迁移到新的岛屿后,经历地理隔离、特征置换或适应辐射等一系列的岛屿进化过程,形成与种源物种具有显著遗传差异的岛屿特有种.岛屿在小面积范围内分化形成大量的特有种,是岛屿生物多样性最为重要的特点之一.但是,岛屿种群由于分布范围局限、生境脆弱且种群规模较小,岛屿种群较陆地种群具有更高的灭绝风险.本文通过对海洋岛屿物种的起源与演化、遗传结构以及岛屿物种的濒危与保护3个热点问题的讨论,阐述岛屿生物多样性的形成机制、濒危肇因以及岛屿生物多样性保育的重要性.  相似文献   

18.
A general dynamic theory of oceanic island biogeography   总被引:1,自引:2,他引:1  
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.  相似文献   

19.
In the past two years, archaeal genomics has achieved several breakthroughs. On the evolutionary front the most exciting development was the sequencing and analysis of the genome of Nanoarchaeum equitans, a tiny parasitic organism that has only approximately 540 genes. The genome of Nanoarchaeum shows signs of extreme rearrangement including the virtual absence of conserved operons and the presence of several split genes. Nanoarchaeum is distantly related to other archaea, and it has been proposed to represent a deep archaeal branch that is distinct from Euryarchaeota and Crenarchaeota. This would imply that many features of its gene repertoire and genome organization might be ancestral. However, additional genome analysis has provided a more conservative suggestion - that Nanoarchaeum is a highly derived euryarchaeon. Also there have been substantial developments in functional genomics, including the discovery of the elusive aminoacyl-tRNA synthetase that is involved in both the biosynthesis of cysteine and its incorporation into proteins in methanogens, and the first experimental validation of the predicted archaeal exosome.  相似文献   

20.
Dissecting evolutionary dynamics of ecologically important traits is a long-term challenge for biologists.Attempts to understand natural variation and molecular mechanisms have motivated a move from laboratory model systems to non-model systems in diverse natural environments.Next generation sequencing methods,along with an expansion of genomic resources and tools,have fostered new links between diverse disciplines,including molecular biology,evolution,ecology,and genomics.Great progress has been made in a few non-model wild plants,such as Arabidopsis relatives,monkey flowers,and wild sunflowers.Until recently,the lack of comprehensive genomic information has limited evolutionary and ecological studies to larger QTL (quantitative trait locus) regions rather than single gene resolution,and has hindered recognition of general patterns of natural variation and local adaptation.Further efforts in accumulating genomic data and developing bioinformatic and biostatistical tools are now poised to move this field forward.Integrative national and international collaborations and research communities are needed to facilitate development in the field of evolutionary and ecological genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号