首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors investigated the morphology and the elastic properties of living cultured rat liver macrophages (Kupffer cells) with an atomic force microscope (AFM). Continuous imaging and elasticity mapping of individual cells in physiological buffer was carried out for several hours without damaging the cells as judged by their persistent undisturbed morphology. Dynamic events such as protrusive activity were observed in time course. The importance of the cytoskeleton for the mechanical properties of the cell has been investigated by measuring the cell's elasticity as a function of position. Chemical disassembly of the actin network by applying 10μg/ml cytochalasin B decreased the cell's average elastic modulus seven-fold within less than 40 minutes. Treating the cells with 0.1μg/ml latrunculin A resulted in a two-fold decrease in the elastic modulus merely in the perinuclear region after 40 minutes, whereas other parts of the cell were not affected.  相似文献   

2.

Present study is intended to assess the probiotic properties of Bacillus spp. isolated from idli batter, a traditional fermented food of Southern India and Sri Lanka. A total of 32 isolates were screened for potential pathogenic behaviour through haemolysis assay, DNase activity and antibiotics sensitivity. Two of the isolates were found to be potentially safe and identified as Bacillus spp. These strains were characterized for in vitro probiotic attributes and antioxidant activity. Both the strains showed strong acid and bile tolerance, transit tolerance, lysozyme tolerance, cell surface hydrophobicity, auto-aggregation, co-aggregation, biofilm formation potential and adhesion to human colon adenocarcinoma (HT 29) cell line demonstrating potential probiotic ability. These strains also exhibited considerable cholesterol binding, thermostability, β-galactosidase production, proteolytic, amylolytic and lipolytic activity. Cell-free supernatant inhibited the biofilm formation by Pseudomonas aeruginosa (KT266804) to 90%. Intact cells showed significant DPPH (41%), hydroxyl (31%), radical scavenging activity and lipid peroxidation inhibition (20.38%), while cell-free extracts exhibited significant superoxide anion radical scavenging activity (16.25%). Results revealed that isolates could be potential probiotic candidate after further assessment of in vivo probiotic properties and safety evaluation and could be utilised as starter cultures in functional foods.

  相似文献   

3.
The colonization of pozzolana by an As(III)-oxidizing bacterial consortium was monitored from the first hours of bacterial adhesion to 6 weeks of development under fed-batch conditions, using adapted ultrasonic dislodging and crystal-violet staining procedures to determine the biofilm adhering to the complex surfaces. The effect of temperature, arsenic concentration, and presence or absence of yeast extract (YE) on the amount of biofilm biomass and on the As(III)-oxidation were assessed to test the biofilm’s resilience and optimize the colonization. Fed-batch cultures allow twice as much pozzolana colonization as that obtained under batch conditions. In addition, As(III) oxidation and the quantities of biomass under fed-batch culture conditions were the same at 14°C and 25°C. Whereas YE improves (+150%) bacterial adhesion during the first 2 h, its impact in the longer term appears to be less significant—biofilm formation in presence of YE after 5 weeks was no greater than biofilm formation in the absence of YE. Finally, YE involves a drastic (−70%) decrease of As(III) oxidation. Preliminary tests for drinking-water bioremediation revealed the ability of Chéni Arsenic Oxidizing 1 biofilms to remain and retain As(III) oxidation activity at low As(III) concentrations (50 μg l−1).  相似文献   

4.
The objective of this study was to examine the inhibitory effect of probiotic strains on pathogenic biofilm formation in terms of competition, exclusion and displacement. Probiotic strains (Lactobacillus acidophilus KACC 12419, Lact. casei KACC 12413, Lactparacasei KACC 12427 and Lactrhamnosus KACC 11953) and pathogens (Salmonella Typhimurium KCCM 40253 and Listeria monocytogenes KACC 12671) were used to evaluate the auto‐aggregation, hydrophobicity and biofilm formation inhibition. The highest auto‐aggregation abilities were observed in Lactrhamnosus (17·5%), Lactcasei (17·2%) and Lactacidophilus (15·1%). Salm. Typhimurium had the highest affinity to xylene, showing the hydrophobicity of 53·7%. The numbers of Lmonocytogenes biofilm cells during the competition, exclusion and displacement assays were effectively reduced by more than 3 log when co‐cultured with Lactparacasei and Lactrhamnosus. The results suggest that probiotic strains can be used as alternative way to effectively reduce the biofilm formation in pathogenic bacteria through competition, exclusion and displacement.

Significance and Impact of the Study

This study provides new insight into biofilm control strategy based on probiotic approach. Probiotic strains effectively inhibited the biofilm formation of Listeria monocytogenes through the mechanisms of competition, exclusion and displacement. These findings contribute to better understand the probiotic‐mediated competition, exclusion and displacement in biofilm formation by pathogens.  相似文献   

5.
Candida albicans is the most notorious and the most widely studied yeast biofilm former. Design of experiments (DoE) showed that 10 mg/L zosteric acid sodium salt reduced C. albicans adhesion and the subsequent biofilm formation by at least 70%, on both hydrophilic and hydrophobic surfaces of 96-well plates. Indeed, biofilm imaging revealed the dramatic impact of zosteric acid sodium salt on biofilm thickness and morphology, due to the inability of the cells to form filamentous structures while remaining metabolically active. In the same way, 10 mg/L zosteric acid sodium salt inhibited C. albicans biofilm formation when added after the adhesion phase. Contrary to zosteric acid sodium salt, methyl zosterate did not affect yeast biofilm. In addition, zosteric acid sodium salt enhanced sensitivity to chlorhexidine, chlorine, hydrogen peroxide, and cis-2-decenoic acid, with a reduction of 0.5 to 8 log units. Preliminary in vitro studies using suitable primary cell based models revealed that zosteric acid sodium salt did not compromise the cellular activity, adhesion, proliferation or morphology of either the murine fibroblast line L929 or the human osteosarcoma line MG-63. Thus the use of zosteric acid sodium salt could provide a suitable, innovative, preventive, and integrative approach to preventing yeast biofilm formation.  相似文献   

6.
Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell''s stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1) into narrow channels. At a channel width of 7 µm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC) that leads to a reorganization of the cell''s keratin network, an enhancement of the cell''s deformability, and also an increase in the cell''s migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell''s invasive potential.  相似文献   

7.
The present work reports with the screening of biofilm-producing bacteria from the dental caries. The dental pathogens showed resistance against various antibiotics and biofilm forming ability at various levels. Among the bacterial strain, Pseudomonas aeruginosa DC-17 showed enhanced biofilm production. Extracellular polymeric substance (EPS) was synthesized by the selected bacterial isolate considerably and contributed as the major component of biofilm. EPS composed of eDNA, proteins and lipids. The total protein content of the EPS was found to be 1.928 mg/mL and was the major component than carbohydrate and DNA. Carbohydrate content was 162.3 mg/L and DNA content of EPS was 4.95 μg/mL. These macromolecules interacted in the matrix to develop dynamic and specific interactions to signalling biofilm to differentiating various environments. Also, the isolated bacteria showed resistant against various commercially available antibiotics. The isolates showed more resistance against penicillin (98%) and were sensitive against amoxicillin. Among the factors, temperature, pH and sugar concentration influenced biofilm formation. Biofilm forming ability of the selected bacterial stain was tested at various pH values and alkaline pH was favoured for biofilm production. Biofilm production was found to be maximum at 40 °C and 8% sucrose enhanced biofilm formation. Biofilm formed by P. aeruginosa DC-17 was resistant against various tested antimicrobials and chemicals.  相似文献   

8.
The effect of generally recognised as safe (GRAS) plant metabolites in regulating the growth of human pathogenic and probiotic bacteria and in the formation of biofilm was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against both pathogenic and probiotic microorganisms, at a subinhibitory concentration (SIC) of ≤50 μg ml?1. Genistein, hydroquinone, p-hydroxybenzoic acid and resveratrol also showed antibacterial effects but at a wide concentration range (SIC = 50–1000 μg ml?1). Catechin, gallic acid, protocatechuic acid and cranberry extracts were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Regarding the effect on biofilm, it was observed that thymol, carvacrol and eugenol showed antibiofilm activity against all potential pathogenic bacteria tested whilst specifically enhancing probiotic aggregation. Catechin, genistein and cranberry extracts did not inhibit the pathogenic aggregation but they stimulated probiotic biofilm formation, whilst gallic acid, protocateuchic acid, hydroquinone, p-hydroxybenzoic acid and resveratrol did not show opposite effect on biofilm formation between pathogenic and probiotic microorganisms. These results indicate that an appropriate combination of GRAS plant metabolites, which have traditionally been used as dietary constituents due to their health-promoting characteristics, can also be extremely useful in the regulation of bacterial proliferation in the intestinal microbiota. Hence, it is suggested to apply these natural GRAS molecules as dietary supplements in the food industry in order to promote probiotic viability and to prevent or reduce colonisation or proliferation of intestinal pathogens.  相似文献   

9.
Bacterial adhesion and growth on interfaces lead to the formation of three-dimensional heterogeneous structures so-called biofilms. The cells dwelling in these structures are held together by physical interactions mediated by a network of extracellular polymeric substances. Bacterial biofilms impact many human activities and the understanding of their properties is crucial for a better control of their development — maintenance or eradication — depending on their adverse or beneficial outcome. This paper describes a novel methodology aiming to measure in situ the local physical properties of the biofilm that had been, until now, examined only from a macroscopic and homogeneous material perspective. The experiment described here involves introducing magnetic particles into a growing biofilm to seed local probes that can be remotely actuated without disturbing the structural properties of the biofilm. Dedicated magnetic tweezers were developed to exert a defined force on each particle embedded in the biofilm. The setup is mounted on the stage of a microscope to enable the recording of time-lapse images of the particle-pulling period. The particle trajectories are then extracted from the pulling sequence and the local viscoelastic parameters are derived from each particle displacement curve, thereby providing the 3D-spatial distribution of the parameters. Gaining insights into the biofilm mechanical profile is essential from an engineer''s point of view for biofilm control purposes but also from a fundamental perspective to clarify the relationship between the architectural properties and the specific biology of these structures.  相似文献   

10.
Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.  相似文献   

11.
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The quantitative information, provided by this study about the relation between surface nanoscale morphology and bacterial adhesion points towards the rational design of implant surfaces that control or inhibit bacterial adhesion and biofilm formation.  相似文献   

12.
Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, H?O? formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of H?O? formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.  相似文献   

13.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

14.
15.

Background  

The first step in biofilm formation is bacterial attachment to solid surfaces, which is dependent on the cell surface physico-chemical properties. Cell wall anchored proteins (CWAP) are among the known adhesins that confer the adhesive properties to pathogenic Gram-positive bacteria. To investigate the role of CWAP of non-pathogen Gram-positive bacteria in the initial steps of biofilm formation, we evaluated the physico-chemical properties and adhesion to solid surfaces of Lactococcus lactis. To be able to grow in milk this dairy bacterium expresses a cell wall anchored proteinase PrtP for breakdown of milk caseins.  相似文献   

16.
This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m2 (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for the development of control strategies efficient in the early stages of biofilm development.  相似文献   

17.
Bacterial adhesion is the first stage of colonisation and biofilm formation by Clostridioides difficile. Cell wall proteins (Cwp) 84 and 66 play crucial roles in the pathophysiology of C. difficile and may affect bacterial adhesion. Sialylated human milk oligosaccharides (HMOs) have potential to inhibit bacterial adhesion in vitro. The aim of this study was to investigate how 3′-sialyllactose (SL) and 6′-SL affect adhesion and C. difficile biofilm formation. Also, the influence of these substances on cwp84 and cwp66 genes expression by C. difficile was assessed. An adhesion assay was performed using three human colon cells in vitro, and biofilm formation was evaluated using crystal violet staining and confocal laser scanning microscopy. The effect of 3′-SL and 6′SL on cwp expression was measured using real time-PCR. Both tested HMOs decreased expression of the cwp84 gene, adhesion of C. difficile to human colon cells in vitro and biofilm formation.  相似文献   

18.
Microbial surface adhesion to surfaces and subsequent biofilm establishment are ubiquitous in drinking water systems, which often contribute to deteriorated water quality. Disinfectants are common agents applied to drinking water controlling microbial propagation, yet the underlying mechanisms of how disinfectants function to regulate microbial activity and thereby biofilm development remains elusive. We experimentally studied the effects of chlorination on extracellular polymeric substance (EPS) production, and its impacts on early-stage biofilm formation in a model drinking water system. Results showed that low-level chlorine (≤ 1.0 mg/L) stimulated microbial EPS (especially of proteins) excretion that favored early-stage biofilm formation. Microbes experiencing higher chlorination (>1.0 mg/L) exhibited clearly suppressed growth associated with reduced EPS release, consequently yielding less biofilm formation. Removal of cell-attached proteins and polysaccharides diminished biofilm formation, which highlighted the critical role of EPS (especially protein components) in biofilm development. A negative correlation between chlorination-mediated microbial protein production and cell surface charge suggested that chlorine disinfection may modify cell surface properties through regulation of microbial EPS excretion and thereby mediate biofilm formation. With these quantitative estimations, this study provides novel insights into how chlorination-mediated EPS excretion shapes early-stage biofilm formation, which is essential for practical functioning of drinking water systems.  相似文献   

19.
Whereas the transfer of Listeria from surfaces to foods and vice versa has been well documented, little is known about the mechanism of bacterial transfer. The objective of this work is to gain a better understanding of the forces involved in listerial biofilms adhesion using atomic force microscopy (AFM). L. monocytogenes Scott A was grown as biofilms on stainless steel surfaces by inoculating stainless steel coupons with Listeria and incubating the coupons for 48 h at 32 °C with a diluted 1:20 tryptic soy broth. After growth, biofilms were equilibrated over saturated salt solutions at a constant relative humidity (%RH) before measurement of adhesion forces using AFM. The effects of contact time, loading force, and biofilm relative humidity (%RH) suggested that neither contact time, loading force nor biofilm %RH had a significant effect on biofilm adhesiveness at a cellular level (P > 0.05). In a second set of experiments, the influence of material type on biofilm adhesiveness was evaluated using two different colloidal probes (SiO2 and polyethylene). Results showed that the maximum pull-off force and retraction work needed to retract the cantilever for glass (−85.42 nN and 1.610−15 J, respectively) were significantly lower than those of polyethylene (−113.38 nN and 2.7 × 10–15 J, respectively; P < 0.001). The results of this study suggest that Listeria biofilms adhere more strongly to hydrophobic surfaces than hydrophilic surfaces when measured at a cellular level. These results provide important insights that could lead to new ways to remediate and avoid listerial biofilm formation in the food industry.  相似文献   

20.
It is a widely accepted that the cell nucleus is the primary site of radiation damage while extra-nuclear radiation effects are not yet systematically included into models of radiation damage.We performed Monte Carlo simulations assuming a spherical cell (diameter 11.5 μm) modelled after JURKAT cells with the inclusion of realistic elemental composition data based on published literature. The cell model consists of cytoplasm (density 1 g/cm3), nucleus (diameter 8.5 μm; 40% of cell volume) as well as cylindrical mitochondria (diameter 1 μm; volume 0.5 μm3) of three different densities (1, 2 and 10 g/cm3) and total mitochondrial volume relative to the cell volume (10, 20, 30%). Our simulation predicts that if mitochondria take up more than 20% of a cell's volume, ionisation events will be the preferentially located in mitochondria rather than in the cell nucleus.Using quantitative polymerase chain reaction, we substantiate in JURKAT cells that human mitochondria respond to gamma radiation with early (within 30 min) differential changes in the expression levels of 18 mitochondrially encoded genes, whereby the number of regulated genes varies in a dose-dependent but non-linear pattern (10 Gy: 1 gene; 50 Gy: 5 genes; 100 Gy: 12 genes).The simulation data as well as the experimental observations suggest that current models of acute radiation effects, which largely focus on nuclear effects, might benefit from more systematic considerations of the early mitochondrial responses and how these may subsequently determine cell response to ionising radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号