首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.  相似文献   

3.
4.
The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies.  相似文献   

5.
6.
7.
We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.  相似文献   

8.
9.
10.
Hypoxia-induced nucleophosmin protects cell death through inhibition of p53   总被引:13,自引:0,他引:13  
Nucleophosmin (NPM) is a multifunctional protein that is overexpressed in actively proliferating cells and cancer cells. Here we report that this proliferation-promoting protein is strongly induced in response to hypoxia in human normal and cancer cells. Up-regulation of NPM is hypoxia-inducible factor-1 (HIF-1)-dependent. The NPM promoter encodes a functional HIF-1-responsive element that can be activated by hypoxia or forced expression of HIF-1alpha. Suppression of NPM expression by small interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of NPM protects against hypoxic cell death of wild-type but not p53-null cells. Moreover, NPM inhibits hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells. Thus, this study not only demonstrates hypoxia regulation of a proliferation-promoting protein but also suggests that hypoxia-driven cancer progression may require increased expression of NPM to suppress p53 activation and maintain cell survival.  相似文献   

11.
In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53-HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.  相似文献   

12.
13.
14.
Chromosome loss or gain is associated with a large number of solid cancers, providing genomic plasticity and thus adaptability to cancer cells. Numerical centrosome abnormalities arising from centrosome over-duplication or failed cytokinesis are a recognized cause of aneuploidy. In higher eukaryotic cells, the centrosome duplicates only once per cell cycle to ensure the formation of a bipolar mitotic spindle that orchestrates the balanced distribution of the sister chromatids to the respective daughter cells. Here we delineate the events that allow abnormal centrosome duplication, resulting in mitotic errors and incorrect chromosome segregation in cells with sustained cyclin-dependent kinase (CDK) activity. We have identified NPM1 as a substrate for CDK6 activated by the Kaposi's sarcoma herpesvirus (KSHV) D-type cyclin and shown that p53-driven apoptosis occurs downstream of NPM1 phosphorylation as a checkpoint mechanism that prevents accumulation of cells with supernumerary centrosomes. Our findings provide evidence that abnormal chromosome segregation in KSHV-infected cells is a direct consequence of NPM1 phosphorylation and predict that genomic instability is an inevitable consequence of latent KSHV infection.  相似文献   

15.
Disruption of Mdm2-p53 interaction activates p53 signaling, disrupts the balance ofantiapoptotic and proapoptotic Bcl-2 family proteins and induces apoptosis in acutemyeloid leukemia (AML). Overexpression of Bcl-2 may inhibit this effect. Thus,functional inactivation of antiapoptotic Bcl-2 proteins may enhance apoptogenic effects ofMdm2 inhibition. We here investigate the potential therapeutic utility of combinedtargeting of Mdm2 by Nutlin-3a and Bcl-2 by ABT-737, recently developed inhibitors ofprotein-protein interactions. Nutlin-3a and ABT-737 induced Bax conformational changeand mitochondrial apoptosis in AML cells in a strikingly synergistic fashion. Nutlin-3ainduced p53-mediated apoptosis predominantly in S and G2/M cells, while cells in G1 were protected through induction of p21. In contrast, ABT-737 induced apoptosis predominantly in G1 , the cell cycle phase with the lowest Bcl-2 protein levels and Bcl-2/Bax ratios. In addition, Bcl-2 phosphorylation on Ser70 was absent in G1 but detectable in G2/M, thus lower Bcl-2 levels and absence of Bcl-2 phosphorylation appeared to facilitate ABT-737-induced apoptosis of G1 cells. The complementary effects of Nutlin-3a and ABT-737 in different cell cycle phases could, in part, account for their synergistic activity. Our data suggest that combined targeting of Mdm2 and Bcl-2 proteins could offer considerable therapeutic promise in AML.  相似文献   

16.
Thioredoxin reductase 1 (TrxR1) is a key regulator in many redox-dependent cellular pathways, and is often overexpressed in cancer. Several studies have identified TrxR1 as a potentially important target for anticancer therapy. The low molecular weight compound RITA (NSC 652287) binds p53 and induces p53-dependent apoptosis. Here we found that RITA also targets TrxR1 by non-covalent binding, followed by inhibition of its activity in vitro and by inhibition of TrxR activity in cancer cells. Interestingly, a novel ~130 kDa form of TrxR1, presumably representing a stable covalently linked dimer, and an increased generation of reactive oxygen species (ROS) were induced by RITA in cancer cells in a p53-dependent manner. Similarly, the gold-based TrxR inhibitor auranofin induced apoptosis related to oxidative stress, but independently of p53 and without apparent induction of the ~130 kDa form of TrxR1. In contrast to the effects observed in cancer cells, RITA had no impact on TrxR or ROS formation in normal fibroblasts (NHDF). The inhibition of TrxR1 can sensitize tumor cells to agents that induce oxidative stress and may directly trigger cell death. Thus, our results suggest that a unique p53-dependent effect of RITA on TrxR1 in cancer cells might synergize with p53-dependent induction of pro-apoptotic genes and oxidative stress, thereby leading to a robust induction of cancer cell death, without affecting non-transformed cells.  相似文献   

17.
Methylxantine derivative, caffeine, is known to prevent the p53-dependent apoptosis pathway via inhibition of ATM (ataxia telangiectasia mutated) kinase, which activates p53 by phosphorylation of the Ser-15 residue. In contrast, it has been reported that caffeine induces p53-mediated apoptosis through Bax protein in non-small-cell lung cancer cells. Therefore, the effects of caffeine on cellular growth in malignant cells are controversial. We investigated the effects of caffeine on cell proliferation, cell cycle progression, and induction of apoptosis in NB4 promyelocytic leukemia cells containing wild-type p53. Caffeine suppressed the cellular growth of NB4 cells in a dose- and time-dependent manner. Caffeine induced G(2)/M phase cell cycle arrest in NB4 cells in association with the induction of phosphorylation at the Ser-15 residue of p53 and induction of tyrosine phosphorylation of cdc2. Expression of Bax protein was increased in NB4 cells after treatment with caffeine. Interestingly, the antisense oligonucleotides for p53 significantly reduced p53 expression and caffeine-induced G(2)/M phase cell cycle arrest in NB4 cells. These results suggest that caffeine induces cell cycle arrest and apoptosis in association with activation of p53 by a novel pathway to phosphorylate the Ser-15 residue and induction of phosphorylation of cdc 2 in leukemic cells with normal p53.  相似文献   

18.
Nucleophosmin (NPM)/B23, a multifunctional nucleolar phosphoprotein, plays an important role in ribosome biogenesis, cell cycle regulation, apoptosis and cancer pathogenesis. The role of NPM in cells is determined by several factors, including total expression level, oligomerization or phosphorylation status, and subcellular localization. In the nucleolus, NPM participates in rRNA maturation to enhance ribosomal biogenesis. Consistent with this finding, NPM expression is increased in rapidly proliferating cells and many types of human cancers. In response to ribosomal stress, NPM is redistributed to the nucleoplasm, where it inactivates mouse double minute 2 homologue to stabilize p53 and inhibit cell cycle progression. These observations indicate that nucleolus‐nucleoplasmic mobilization of NPM is one of the key molecular mechanisms that determine the role of NPM within the cell. However, the regulatory molecule(s) that control(s) NPM stability and subcellular localization, crucial to the pluripotency of intercellular NPM, remain(s) unidentified. In this study, we showed that nucleolar protein GLTSCR2/Pict‐1 induced nucleoplasmic translocation and enhanced the degradation of NPM via the proteasomal polyubiquitination pathway. In addition, we showed that GLTSCR2 expression decreased the transforming activity of cells mediated by NPM and that the expression of NPM is reciprocally related to that of GLTSCR2 in cervical cancer tissue. In this study, we demonstrated that GLTSCR2 is an upstream negative regulator of NPM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号