首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a possible role for the KIFC1 motor protein in formation of the acrosome, an organelle unique to spermatogenesis. KIFC1, a C-terminal kinesin motor, first appears on membrane-bounded organelles (MBOs) in the medulla of early spermatids followed by localization to the acrosomal vesicle. KIFC1 continues to be present on the acrosome of elongating spermatids as it flattens on the spermatid nucleus; however, increasing amounts of KIFC1 are found at the caudal aspect of the spermatid head and in distal cytoplasm. The KIFC1 motor is also found in the nucleus of very immature round spermatids just prior to its appearance on the acrosome. In some cases, KIFC1 appears localized just below the nuclear membrane adjacent to the subacrosomal membrane. We demonstrate that KIFC1 is associated with importin beta and colocalizes with this nuclear transport factor on curvilinear structures associated with the spermatid nuclei. These data support a model in which KIFC1, perhaps in association with nuclear factors, assists in the formation and/or elongation of the spermatid acrosome. This article represents the first demonstration of a direct association of a molecular motor with the spermatid acrosome, the formation of which is essential for fertilization.  相似文献   

2.
Spermatogenesis is a complicated process during which spermatogonia undergo proliferation and divisions leading, after a series of dramatic changes, to the production of mature spermatozoa. Many molecular motors are involved in this process. KIFC1, a C-terminal kinesin motor, participates in acrosome biogenesis and nuclear shaping. We report here the expression profile of KIFC1 during spermatogenesis in the Chinese mitten crab, Eriocheir sinensis. KIFC1 mainly localizes around the nucleus but is also present within the nucleus of the spermatogonium and spermatocyte. At the early spermatid stage, KIFC1 begins to be distributed on the nuclear membrane at the region where the proacrosomal vesicle is located. By the late spermatid stage, KIFC1 is found on the acrosome. Immunocytochemical and ultrastructural analyses have shown that KIFC1 localizes on the perforatorium, which is composed of an apical cap and an acrosomal tubule. We demonstrate that, during spermatogenesis in E. sinensis, KIFC1 probably plays important roles in the biogenesis of the acrosome and in its maintenance. KIFC1 may also be essential for the eversion of the acrosome during fertilization. This work was supported in part by the following projects: the National Natural Science Foundation of China (nos. 30671606 and 40776079) and the National Basic Research Program of China (973 Program; grant no. 2007CB948104).  相似文献   

3.
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation. This work was supported by grants 83-0211-B-002-184 and 93-2320-B-320-012 from the National Science Council, Taiwan, Republic of China.  相似文献   

4.
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.  相似文献   

5.
Active trafficking from the Golgi apparatus is involved in acrosome formation, both by delivering acrosomal contents to the nascent secretory vesicle and by controlling organelle growth and shaping. During murine spermiogenesis, Golgi antigens (giantin, beta-COP, golgin 97, mannosidase II) are detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgi-acrosome flow may be relatively unselective, with Golgi residents retrieved before spermiation is complete. Treatment of spermatogenic cells with brefeldin A, a drug that causes the Golgi apparatus to collapse into the endoplasmic reticulum, disrupted the Golgi in both pachytene spermatocytes and round spermatids. However, this treatment did not affect the acrosomal granule, and some beta-COP labeling on the acrosome of elongating spermatids was maintained. Additionally, N-ethylmaleimide sensitive factor, soluble NSF attachment proteins, and homologues of the t-SNARE syntaxin and of the v-SNARE VAMP/synaptobrevin, as well as members of the rab family of small GTPases, are associated with the acrosome (but not the acrosomal granule) in round and elongated spermatids. This suggests that rab proteins and the SNARE machinery for membrane recognition/docking/fusion may be involved in trafficking during mammalian acrosome biogenesis.  相似文献   

6.
Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes beta-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both beta-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.  相似文献   

7.
Regulated exocytosis is controlled by internal and external signals. The molecular machinery controlling the sorting from the newly synthesized vesicles from the Golgi apparatus to the plasma membrane play a key role in the regulation of both the number and spatial location of the vesicles. In this context the mammalian acrosome is a unique vesicle since it is the only secretory vesicle attached to the nucleus. In this work we have studied the membrane trafficking between the Golgi apparatus and the acrosome during mammalian spermiogenesis. During bovine spermiogenesis, Golgi antigens (mannosidase II) were detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgiacrosome flow may be relatively unselective, with Golgi residents retrieved before spermination is complete. Surprisingly, rab7, a protein involved in lysosome/endosome trafficking was also found associated with the acrosomal vesicle during mouse spermiogenesis. Our results suggest that the acrosome biogenesis is associated with membrane flow from both the Golgi apparatus and the endosome/lysosome system in mammalian spermatids.  相似文献   

8.
Mammalian spermatozoa must complete an acrosome reaction prior to fertilizing an oocyte. The acrosome reaction is a unique exocytotic event involving a series of prolonged membrane fusions that ultimately result in the production of membrane vesicles and release of the acrosomal contents. This event requires the concerted action of a large number of fusion-competent signaling and scaffolding proteins. Here we show that two different members of the dynamin GTPase family localize to the developing acrosome of maturing mouse germ cells. Both dynamin 1 and 2 also remain within the periacrosomal region of mature mouse spermatozoa and are thus well positioned to regulate the acrosome reaction. Two pharmacological inhibitors of dynamin, dynasore and Dyngo-4a, blocked the in vitro induction of acrosomal exocytosis by progesterone, but not by the calcium ionophore A23187, and elicited a concomitant reduction of in vitro fertilization. In vivo treatment with these inhibitors also resulted in spermatozoa displaying reduced acrosome reaction potential. Dynamin 1 and 2 phosphorylation increased on progesterone treatment, and this was also selectively blocked by dynasore. On the basis of our collective data, we propose that dynamin could regulate specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa.  相似文献   

9.
Spermiogenesis is a developmental process undergoing continuous differentiation to drive a diploid spermatogonium towards a haploid sperm cell. This striking transformation from spermatogonium to spermatozoa is made possible by the stage-specific adaption of cytoskeleton and associated molecular motor proteins. KIFC1 is a C-terminal kinesin motor found to boast essential roles in acrosome biogenesis and nuclear reshaping during spermiogenesis in rat. To explore its functions during the same process in Macrobrachium nipponense, we have cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed mn-KIFC1) from the total RNA of the testis. The 2,296 bp mn-KIFC1 cDNA contained a 87 bp 5' untranslated region, a 211 bp 3' untranslated region and a 1,998 bp open reading frame. Protein alignment demonstrated that mn-KIFC1 had 37.7, 58.7, 38.4, 37.2, 38.9 and 37.8% identity with its homologues in Salmo salar, Eriocheir sinensis, Homo sapiens, Mus musculus, Danio rerio and Xenopus laevis respectively. The phylogenetic tree revealed that mn-KIFC1 is most related to E. Sinensis KIFC1 among the examined species. Tissue expression analysis showed the presence of mn-KIFC1 in the testis, hepatopancreas, gill, muscle and heart. In situ hybridization showed that the mn-KIFC1 mRNA was localized at the periphery of the nuclear membrane and in the proacrosomal vesicle in early and middle spermatids. In late spermatids and spermatozoa, mn-KIFC1 was expressed in the acrosome and in the spike. In situ hybridization also indicated that KIFC1 works together with lamellar complex (LCx) and acroframosome (AFS) to drive acrosome formation and cellular transformation. LCx and AFS have both been previously proved to have essential roles during spermiogenesis in M. nipponense. In conclusion, the expression of mn-kifc1 at specific stages of spermiogenesis suggests a role in cellular transformations in M. nipponense.  相似文献   

10.
Spermatozoa of the hagfishes Eptatretus burgeri and Eptatretus stouti, caught in the sea near Japan and North America, respectively, were found to undergo the acrosome reaction, which resulted in the formation of an acrosomal process with a filamentous core. The acrosomal region of spermatozoa of E. stouti exhibited immunofluorescent labeling using an actin antibody. The midpiece also labeled with the antibody. The acrosomal region showed a similar labeling pattern when sperm were probed with tetramethylrhodamine isothyocyanate (TRITC)-phalloidin; the midpiece did not label. Following induction of the acrosome reaction with the calcium (Ca2+) ionophore ionomycin, TRITC-phalloidin labeling was more intense in the acrosomal region, suggesting that the polymerization of actin occurs during formation of the acrosomal process, as seen in many invertebrates. The potential for sperm to undergo acrosomal exocytosis was already acquired by late spermatids. During acrosomal exocytosis, the outer acrosomal membrane and the overlying plasma membrane disappeared and were replaced by an array of vesicles; these resembled an early stage of the acrosome reaction in spermatozoa of higher vertebrates in which no formation of an acrosomal process occurs. It is phylogenetically interesting that such phenomena occur in spermatozoa of hagfish, a primitive vertebrate positioning between invertebrates and high vertebrates.  相似文献   

11.
During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.  相似文献   

12.
The spermatozoa of the musk shrew, Suncus murinus, have a fan-like giant acrosome with a diameter of approximately 20 mm. The aim of this study was to investigate how this giant acrosome is constructed in the musk shrew spermatid and, in particular, how the Golgi apparatus involved in acrosome formation behaves. The behaviour of the Golgi apparatus was monitored by confocal laser scanning microscopy with antibody against a Golgi-associated Rab6 small GTPase. In the early Golgi phase, small Golgi units, the Golgi satellites, localized as a large aggregate in the juxtanuclear cytoplasm. As acrosome formation progressed, the Golgi satellites gradually dispersed, associated with proacrosomal vesicles and an acrosomal vesicle, and finally became distributed as multiple small units over the whole surface of an acrosomal cap in the round spermatid. The mode of acrosome formation in musk shrews was distinctly different from that in rats and mice, in which the Golgi apparatus remains as a single unit throughout acrosome formation. In musk shrews, the proacrosomal vesicles formed successively by the Golgi satellites coalesced, one after another, into a potential acrosomal vesicle. This process may result in further enlargement of the acrosome. The results of the present study indicate that Golgi satellites are necessary for the biogenesis and development of the giant acrosome in musk shrew spermatozoa.  相似文献   

13.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

14.
Mature house fly, Musca domestica L. (Diptera : Muscidae), sperm were treated with female accessory gland secretion and micropyle cap substance to determine their effectiveness in eliciting an acrosome response. Scanning and transmission electron microscopy revealed that release of acrosomal material was achieved by treatment of the sperm with a combination of accessory gland secretion and micropyle cap substance but not by gland secretion alone. The gland secretion was utilized to dissolve the cap substance from mature ovarian eggs, and this combined solution was applied to sperm removed from the spermathecae of mated females. The acrosomes of several of the sperm were completely lacking, while others showed a partial effect of the treatment, i.e. extensive acrosomal membrane fragmentation and vesiculation. Most sperm that reacted to the treatment lacked a plasma membrane around the acrosome, suggesting that this membrane, along with the acrosomal membrane, is involved in formation of the vesicles alongside the acrosomal cavity.  相似文献   

15.
Control of membrane fusion during spermiogenesis and the acrosome reaction   总被引:5,自引:0,他引:5  
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.  相似文献   

16.
KIFC1 is a C-terminal kinesin motor associated with the nuclear membrane and acrosome in round and elongating spermatids. This location in developing spermatids is consistent with possible roles in acrosome elongation and manchette motility or both. Here we describe the association of the KIFC1 motor with a complex containing the nucleoporin NUP62. Formation of this complex is developmentally regulated, being absent before puberty and appearing only after nuclear elongation has begun. In addition, the integrity of this complex is dependent on GTP hydrolysis and the GTP state of the small GTPase RAN. Concomitant with the association of this motor with the NUP62-containing complex is an apparent reorganization of the nuclear pore with loss of NUP62 from larger complexes containing other nucleoporins. The association of KIFC1 with a component of the nuclear membrane is more consistent with a role for this motor in acrosome/manchette transport along the nuclear membrane than for a role for this motor in transport of vesicles along the outer face of the manchette.  相似文献   

17.
The localization of an acrosomal protein was studied using a monoclonal antibody MN7 raised against mouse spermatozoa. MN7 specifically recognized the anterior acrosome of several mammalian (mouse, rat, hamster) spermatozoa fixed with paraformaldehyde. An immunoblot study with periodate treatment showed that MN7 recognized a carbohydrate region of a 90 kDa protein in an extract of mouse and rat cauda epididymal spermatozoa. The change in distribution of the MN7 antigen during acrosome development was investigated in the rat testis using the pre-embedding immunoperoxidase technique. The antigen first appeared in the proacrosomic granules of spermatids in steps 1–2. Small vesicles adjacent to the outer acrosomal membrane and the developing acrosomic system were immunoreactive during steps 4–7. The majority of the antigen was then redistributed to the head-cap portion during steps 8–18, and finally restricted to the anterior acrosome in the step 19-spermatid. These results suggest that the antigen is transported to the acrosome by way of the vesicles that originate from the Golgi apparatus during early spermiogenesis, and are then delivered to the final destination within the acrosome by the intra-acrosomal migration during late spermiogenesis.  相似文献   

18.
The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.  相似文献   

19.
The localization of ubiquitin (UB) signals in the acrosomes of rat spermiogenic cells was investigated by immunoelectron microscopy using two anti-UB antibodies: UB1, reacting with ubiquitinated proteins and free UB; and FK1, recognizing polyubiquitinated proteins but not monoubiquitinated proteins or free UB. Labeling of UB by UB1 (UB1 signal) was detected in the acrosomes at any stage of differentiation. In step 1 spermatids, UB1 signals were detected on the cytoplasmic surface and in the matrix of transport vesicles located between the trans-Golgi network and the acrosome. Weak signals were detected in acrosomal granules within acrosome vesicles that had not yet attached to the nucleus. In step 4-5 spermatids, the acrosome vesicles had enlarged and attached to the nucleus. Strong gold labeling was noted in a narrow space between the outer acrosomal membrane and the developing acrosomal granule, where a dense fibrous material was observed on routine electron microscopy, whereas the acrosomal granule was weakly stained by UB1 antibody. In step 6-8 spermatids, UB1 signals were detected in the fibrous material that expanded laterally to form a narrow electronless dense zone between the acrosomal granule and the outer acrosomal membrane. Labeling in the acrosomal granule increased. In step 9-11 spermatids, UB1 signals were confined to the narrow zone from the tip of the head to the periphery of the ventral fin. The matrix of the acrosome was weakly stained. In epididymal sperm, UB1 labeling in the acrosome decreased without any pretreatment, whereas staining was noted in a spot in the neck region and in the dorsal fin after trypsin digestion. On the other hand, the staining pattern with FK1 was quite different from that with UB1. The trans-Golgi network was weakly stained but the cis-Golgi network was strongly stained. The dense fibrous material just beneath the outer membrane was never stained with FK1. The results suggest that UB on the surface of transport vesicles is involved in anterograde transport from the Golgi apparatus to the acrosome. The physiological role of UB in acrosomes is not clear. Two candidates for monoubiquitinated proteins in the acrosome, which have a UB-interacting motif, were found by cyber screening.  相似文献   

20.
The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号