首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li  Qi  Wang  Jia  Ma  Xudong  Wang  Maode  Zhou  Lei 《Journal of bioenergetics and biomembranes》2021,53(5):621-632

Dysregulation of protein O-fucosyl transferase 1 (POFUT1) contributes to the occurrence and progression of multiple cancers. However, whether POFUT1 has a relationship with the pathogenesis of glioblastoma (GBM) is unknown. This work was aimed at evaluating the detailed relevance of POFUT1 in GBM. Here, we demonstrated high levels of POFUT1 in GBM tissue and elucidated that GBM patients with high levels of POFUT1 had a shorter survival rate than those with low levels of POFUT1. POFUT1 knockdown in GBM cells markedly downregulated the ability to proliferate and invade, while overexpression of POFUT1 potentiated the proliferative and invasive ability of GBM cells. Further mechanistic studies indicated that silencing POFUT1 prohibited the activation of Notch signaling, leading to a reduction in the expression of HES1 and HEY1. On the contrary, overexpression of POFUT1 enhanced the activation of Notch signaling. Notably, inhibition of Notch signaling markedly reversed POFUT1-overexpression-induced tumor promotion effects in GBM cells. In addition, POFUT1 silencing markedly repressed the potential of GBM cells to form tumors in vivo. In conclusion, the data of this work indicates that POFUT1 serves a tumor promotion role in GBM by enhancing the activation of Notch signaling. This study underlines the potential role of the POFUT1/Notch axis in GBM progression and proposes POFUT1 as a promising anticancer target for GBM.

  相似文献   

2.
RUNX3 takes a strong suppressive effect in many tumors including hepatocellular carcinoma (HCC). HES-1, a downstream target of Notch signaling, is shown to be decreased in human HCC cell line SMMC7721 with RUNX3 gene transfection. Since Notch signaling is oncogenic in HCC, RUNX3 might exert its inhibitory effect in HCC partly through the suppression on Notch signaling. To investigate the possible mechanism of the down-regulation of HES-1 by RUNX3, we performed Western blot and reporter assay and found that RUNX3 suppressed intracellular domain of Notch1 (ICN1)-mediated transactivation of Notch signaling while it did not alter the expression of ICN1 and recombination signal binding protein-Jκ (RBP-J) in SMMC7721 cells. Besides, confocal microscopy, co-immunoprecipitation and GST pull-down assays showed that RUNX3 could co-localize with ICN1 and RBP-J, forming a complex with these two molecules in nucleus of SMMC7721 cells by its direct interaction with ICN1. Furthermore, RUNX3 was recruited to RBP-J recognition motif of HES-1 promoter, which was identified by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Taken together, these findings indicate that RUNX3 suppresses Notch signaling in HCC SMMC7721 cells by its interaction with ICN1 and thus recruitment to the RBP-J recognition motif of downstream genes of Notch signaling.  相似文献   

3.
摘要 目的:探讨狐猴酪氨酸激酶2(LMTK2)基因沉默对人上皮性卵巢癌(EOC)细胞生长和转移的抑制作用及其可能的机制。方法:通过RT-qPCR和Western-blot检测了人正常卵巢上皮细胞IOSE80和人上皮性卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的表达,使用Lipofectamine 3000转染试剂将LMTK2的短发夹RNA(shRNA)、阴性对照shRNA、LMTK2过表达重组pcDNA3.1质粒或阴性对照质粒转染到SKOV3细胞中,并分为LMTK2-shRNA组、NC-shRNA组、LMTK2-pcDNA3.1组或NC-pcDNA3.1组。另外,使用PI3K/Akt抑制剂LY294002处理SKOV3细胞1 h。通过CCK-8法测定细胞增殖,Annexin V-FITC/PI染色法测定细胞凋亡,划痕实验评价细胞迁移,Transwell实验评价细胞侵袭。对BALB/c雌性裸鼠皮下注射转染NC-shRNA或LMTK2-shRNA的SKOV3细胞建立体内移植瘤模型,并记录接种28 d内的肿瘤体积。结果:与人正常卵巢上皮细胞IOSE80相比,卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的mRNA和蛋白表达水平均显著升高,其中SKOV3的LMTK2 mRNA和蛋白表达水平最高(P<0.05)。与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞活力、相对迁移面积、侵袭细胞数均显著降低,而细胞凋亡率显著升高(P<0.05)。此外,与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞中Bax的蛋白表达水平显著升高,而Bcl-2、MMP2、MMP9、p-Akt的蛋白表达水平显著降低(P<0.05)。LY294002处理逆转了上调LMTK2对SKOV3细胞生长和转移的影响(P<0.05)。在接种第21天和28天时,与NC-shRNA组相比,LMTK2-shRNA组裸鼠的肿瘤体积显著降低(P<0.05)。结论:LMTK2基因沉默通过抑制PI3K/Akt信号通路降低了人上皮性卵巢癌细胞的生长和转移能力。  相似文献   

4.
5.
6.
Dai L  He J  Liu Y  Byun J  Vivekanandan A  Pennathur S  Fan X  Lubman DM 《Proteomics》2011,11(23):4529-4540
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation, a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation, as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data, possibly due to their crosstalk with Notch Signaling. Overall, this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs.  相似文献   

7.

Background

Descending thoracic aortic aneurysm and dissection (DTAAD) is characterized by progressive medial degeneration, which may result from excessive tissue destruction and insufficient repair. Resistance to tissue destruction and aortic self-repair are critical in preventing medial degeneration. The signaling pathways that control these processes in DTAAD are poorly understood. Because Notch signaling is a critical pathway for cell survival, proliferation, and tissue repair, we examined its activation in DTAAD.

Methods

We studied descending thoracic aortic tissue from patients with sporadic thoracic aortic aneurysm (TAA; n = 14) or chronic thoracic aortic dissection (TAD; n = 16) and from age-matched organ donors (n = 12). Using western blot, real-time RT-PCR, and immunofluorescence staining, we examined aortic tissue samples for the Notch ligands Delta-like 1, Delta-like 4 (DLL1/4), and Jagged1; the Notch receptor 1 (Notch1); the Notch1 intracellular domain (NICD); and Hes1, a downstream target of Notch signaling.

Results

Western blots and RT-PCR showed higher levels of the Notch1 protein and mRNA and the NICD and Hes1 proteins in both TAA and TAD tissues than in control tissue. However, immunofluorescence staining showed a complex pattern of Notch signaling in the diseased tissue. The ligand DLL1/4 and Notch1 were significantly decreased and NICD and Hes1 were rarely detected in medial vascular smooth muscle cells (VSMCs) in both TAA and TAD tissues, indicating downregulation of Notch signaling in aortic VSMCs. Interestingly Jagged1, NICD, and Hes1 were highly present in CD34+ stem cells and Stro-1+ stem cells in aortas from TAA and TAD patients. NICD and Hes1 were also detected in most fibroblasts and macrophages that accumulated in the aortic wall of DTAAD patients.

Conclusions

Notch signaling exhibits a complex pattern in DTAAD. The Notch pathway is impaired in medial VSMCs but activated in stem cells, fibroblasts, and macrophages.  相似文献   

8.
9.
10.
Pulmonary hypertension (PH) is a fatal disease that lacks an effective therapy. Notch signaling pathway plays a crucial role in the angiogenesis and vascular remodeling. However, its roles in vascular remodeling in PH have not been well studied. In the current study, using hypoxia-induced PH model in rat, we examined the expression of Notch and its downstream factors. Then, we used vessel strip culture system and γ-secretase inhibitor DAPT, a Notch signaling inhibitor to determine the effect of Notch signaling in vascular remodeling and its potential therapeutic value. Our results indicated that Notch 1–4 were detected in the lung tissue with variable levels in different cell types such as smooth muscle cells and endothelial cells of pulmonary artery, bronchia, and alveoli. In addition, following the PH induction, all of Notch1, Notch3, Notch4 receptor, and downstream factor, HERP1 in pulmonary arteries, mRNA expressions were increased with a peak at 1–2 weeks. Furthermore, the vessel wall thickness from rats with hypoxia treatment increased after cultured for 8 days, which could be decreased approximately 30% by DAPT, accompanied with significant increase of expression level of apoptotic factors (caspase-3 and Bax) and transformation of vascular smooth muscle cell (VSMC) phenotype from synthetic towards contractile. In conclusion, the current study suggested Notch pathway plays an important role in pulmonary vascular remodeling in PH and targeting Notch signaling pathway could be a valuable approach to design new therapy for PH.  相似文献   

11.
12.
Hypoxia is a hallmark of solid tumors including glioblastoma (GBM). Its synergism with Notch signaling promotes progression in different cancers. However, Notch signaling exhibits pleiotropic roles and the existing literature lacks a comprehensive understanding of its perturbations under hypoxia in GBM with respect to all components of the pathway. We identified the key molecular cluster(s) characteristic of the Notch pathway response in hypoxic GBM tumors and gliomaspheres. Expression of Notch and hypoxia genes was evaluated in primary human GBM tissues by q-PCR. Clustering and statistical analyses were applied to identify the combination of hypoxia markers correlated with upregulated Notch pathway components. We found well-segregated tumor—clusters representing high and low HIF-1α/PGK1-expressors which accounted for differential expression of Notch signaling genes. In combination, a five-hypoxia marker set (HIF-1α/PGK1/VEGF/CA9/OPN) was determined as the best predictor for induction of Notch1/Dll1/Hes1/Hes6/Hey1/Hey2. Similar Notch-axis genes were activated in gliomaspheres, but not monolayer cultures, under moderate/severe hypoxia (2%/0.2% O2). Preliminary evidence suggested inverse correlation between patient survival and increased expression of constituents of the hypoxia-Notch gene signature. Together, our findings delineated the Notch-axis maximally associated with hypoxia in resected GBM, which might be prognostically relevant. Its upregulation in hypoxia-exposed gliomaspheres signify them as a better in-vitro model for studying hypoxia-Notch interactions than monolayer cultures.  相似文献   

13.
Orthodontic tooth movement (OTM) is a periodontal tissue remodeling and regeneration process that is caused by bio-mechanical stimulation. This mechanical–chemical transduction process involves a variety of biological factors and signaling pathways. It has been shown that the Hippo-YAP/TAZ signaling pathway plays a pivotal role in the mechanical–chemical signal transduction process. Moreover, YAP and TAZ proteins interact with RUNX family proteins via different mechanisms. To explore the regulation of the Hippo signaling pathway during periodontal tissue remodeling, we examined the upper first molar OTM model in rats. We examined YAP, TAZ and RUNX2 expression at 12 hours, 24 hours, 2 days (2d), 4 days, 7 days (7d) and 14 days (14d) after force application. Haemotoxylin and eosin staining, immunohistochemical staining and western blot analysis were used to examine the expression level and localization of these proteins. We found that YAP, TAZ and RUNX2 expression started increasing at 2d, YAP and TAZ expression was proportional to the orthodontic force applied until peaking at 7d, and at 14d the expression started to decrease. YAP and TAZ were observed in osteocytes, bone matrix and periodontal ligament cells during OTM. Furthermore, using double labeling immunofluorescence staining, we found that the increase in TAZ expression was associated with RUNX2 expression, however, YAP and RUNX2 showed different expression patterns. These results suggest that the Hippo-YAP/TAZ signaling pathway participates in periodontal tissue remodeling through various mechanisms; TAZ may adjust bone tissue remodeling through RUNX2 during OTM, while YAP may regulate periodontal cell proliferation and differentiation.  相似文献   

14.
15.
Activation of the Notch signaling pathway segregates the non-skeletogenic mesoderm (NSM) from the endomesoderm during sea urchin embryo development. Subsequently, Notch signaling helps specify the four subpopulations of NSM, and influences endoderm specification. To gain further insight into how the Notch signaling pathway is regulated during these cell specification events, we identified a sea urchin homologue of Numb (LvNumb). Previous work in other model systems showed that Numb functions as a Notch signaling pathway antagonist, possibly by mediating the endocytosis of other key Notch interacting proteins. In this study, we show that the vegetal endomesoderm expresses lvnumb during the blastula and gastrula stages, and that the protein is localized to the presumptive NSM. Injections of lvnumb mRNA and antisense morpholinos demonstrate that LvNumb is necessary for the specification of mesodermal cell types, including pigment cells, blastocoelar cells and muscle cells. Functional analysis of the N-terminal PTB domain and the C-terminal PRR domain of LvNumb shows that the PTB domain, but not the PRR domain, is sufficient to recapitulate the demonstrable function of full-length LvNumb. Experiments show that LvNumb requires an active Notch signal to function during NSM specification and that LvNumb functions in the cells responding to Delta and not in the cells presenting the Delta ligand. Furthermore, injection of mRNA encoding the intracellular domain of Notch rescues the LvNumb morpholino phenotype, suggesting that the constitutive intracellular Notch signal overcomes, or bypasses, the absence of Numb during NSM specification.  相似文献   

16.
17.
18.
Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号