首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionThe pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology.MethodsALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control.ResultsALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration.ConclusionsALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0651-0) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-1beta-induced productions of IL-6 and PGE(2) from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, anti-peptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-1beta compared to IL-1alpha. IL-1-induced IL-6 production was augmented by coincubation with PGE(2). The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE(2) production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE(2). However, the effect of PGE(2) is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.  相似文献   

4.
MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ~2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.  相似文献   

5.
Many studies have identified and described various medicinal effects of cirsiliol. Here, we investigated the signaling pathway involved in the anti-inflammatory effects of cirsiliol on IL-6-induced activity. Cirsiliol showed no cytotoxicity and inhibited pSTAT3-induced luciferase activity. At the molecular level, cirsiliol suppressed the expression of IL-6-induced inflammatory marker genes such as CRP, IL-1β, ICAM-1 and SOCS3, IL-6-induced activation of Jak2, gp130, STAT3 and ERK and nuclear translocation of STAT3, as measured by PCR, immunofluorescence staining and western blot analysis. However, the interaction between IL-6 and its receptor was not affected by cirsiliol treatment. These results indicate that cirsiliol attenuates IL-6-induced cellular signaling by regulating Jak2 phosphorylation. Therefore, cirsiliol could be a therapeutic agent for IL-6-related inflammatory diseases.  相似文献   

6.
7.
Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4–7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.  相似文献   

8.
《MABS-AUSTIN》2013,5(8):1312-1321
ABSTRACT

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.  相似文献   

9.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

10.
Nuclear factor (NF)-κB is a key regulator of synovial inflammation. We investigated the effect of local NF-κB inhibition in rat adjuvant arthritis (AA), using the specific IκB kinase (IKK)-β blocking NF-κB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-β-induced IκBα phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-α and IL-1-β in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-β-induced TNF-α production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-α-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-κB blockade using a small peptide inhibitor of IKK-β has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-β-targeted NF-κB blockade using the NBD peptide could offer a new approach for the local treatment of arthritis.  相似文献   

11.
The linear pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs) can be considered a class property with values that are similar to endogenous IgG. Knowledge of these parameters across species could be used to avoid unnecessary in vivo PK studies and to enable early PK predictions and pharmacokinetic/pharmacodynamic (PK/PD) simulations. In this work, population-pharmacokinetic (popPK) modeling was used to determine a single set of ‘typical’ popPK parameters describing the linear PK of mAbs in human, cynomolgus monkey and transgenic mice expressing the human neonatal Fc receptor (hFcRn Tg32), using a rich dataset of 27 mAbs. Non-linear PK was excluded from the datasets and a 2-compartment model was applied to describe mAb disposition. Typical human popPK estimates compared well with data from comparator mAbs with linear PK in the clinic. Outliers with higher than typical clearance were found to have non-specific interactions in an affinity-capture self-interaction nanoparticle spectroscopy assay, offering a potential tool to screen out these mAbs at an early stage. Translational strategies were investigated for prediction of human linear PK of mAbs, including use of typical human popPK parameters and allometric exponents from cynomolgus monkey and Tg32 mouse. Each method gave good prediction of human PK with parameters predicted within 2-fold. These strategies offer alternative options to the use of cynomolgus monkeys for human PK predictions of linear mAbs, based on in silico methods (typical human popPK parameters) or using a rodent species (Tg32 mouse), and call into question the value of completing extensive in vivo preclinical PK to inform linear mAb PK.  相似文献   

12.
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibody's lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.  相似文献   

13.
In contrast to pig-tailed and cynomolgus macaques, which die in 6-10 days following infection with the SIV-PBj-14 isolate, only about 50% of rhesus succumbed to rapid disease. Using a CD45RA MAb that delineates memory (CD45RAlo), naive (CD45RAmed) and "activated" (CD45RAhi) T-cell subsets, it was seen that PBMC from pig-tailed and cynomolgus monkeys, unlike rhesus, have reduced CD4/CD8 ratios and a skewing of T cells towards CD45RAhi expression. Such preactivation of CD4+ cells could lead to enhanced viral replication and early death.  相似文献   

14.
《MABS-AUSTIN》2013,5(5):829-837
QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.  相似文献   

15.
16.
17.
Recombinant human interleukin (IL)-18 (rHuIL-18) has a potential as a therapeutic agent in cancer and is currently in drug development. Since human IL-18 displays 96% and 100% amino acid sequence homology with cynomolgus monkey and chimpanzee IL-18, respectively, the biological responses to rHuIL-18 were evaluated in these species. A single intravenous dose of rHuIL-18 at 1 or 10mg/kg in cymonolgus monkeys caused a transient reduction in lymphocyte counts, induction of IL-1alpha and tumour necrosis factor alpha (TNF-alpha) mRNA in whole blood cells and a marked increase in plasma neopterin. rHuIL-18 administered to cynomolgus monkeys at doses of 0.3 or 3mg/kg for two 5-day cycles (Days 1-5 and 15-19) resulted in increased monocyte counts, induction of NK cells and concomitant increases in plasma IL-12 and neopterin. Administration of repeat doses of rHuIL-18 at 10mg/kg to chimpanzees was associated with increased monocyte counts, upregulation of FcgammaRI surface expression on monocytes, and increased IL-8, IL-12 and neopterin in plasma. These studies demonstrate, for the first time, the immunostimulatory activity of rHuIL-18 in vivo. The described pharmacological profile of rHuIL-18 in both cynomolgus monkeys and chimpanzees is indicative of the immunotherapeutic potential of rHuIL-18 in the treatment of cancer.  相似文献   

18.
19.
Interleukin-6 (IL-6) plays a crucial role in malignant diseases, such as rheumatoid arthritis, Castleman disease, and multiple myeloma, and as such, is an attractive therapeutic target. Here, the authors isolated a novel IL-6 inhibitor peptide by in vitro selection using mRNA display. The authors first used a random-primed human cDNA library to isolate IL-6-binding peptides. After four rounds of selection, a 19-amino acid peptide named CA11 was selected and confirmed to specifically interact with IL-6. The authors then performed an alanine scan analysis of CA11 and determined the amino acid residues necessary to interact with IL-6. Next, the authors constructed a CA11-based partially randomized library and after ten more rounds of selection, isolated several groups of peptides. The most frequently occurring sequence, RA07, bound to IL-6 with 3 to 4-fold higher affinity than CA11. Furthermore, RA07 inhibited IL-6-dependent KT-3 cell proliferation in a dose-dependent manner. ELISAs revealed that RA07 could not inhibit IL-6 from binding to the IL-6 receptor (IL-6R), but could inhibit the IL-6/IL-6 complex binding to gp130.  相似文献   

20.
The sequencing of endopeptidase-generated peptides from the peripheral binding site (PBS) for benzodiazepines, purified from a Chinese hamster ovary (CHO) cell line, produced internal sequence information, and confirmed and extended the NH2-terminal PBS sequence that we previously reported. Since the sequences were highly similar to the corresponding rat PBS sequences, we investigated whether they were also conserved in human PBS. Scatchard analysis of [3H]PK11195 (a derivative of isoquinoline carboxamide) binding and photoaffinity labeling with [3H]PK14105 (a nitrophenyl derivative of PK11195) revealed that CHO PBS and human PBS are closely related. Furthermore a rabbit antiserum raised against three peptides synthesized on the basis of the CHO PBS sequence immunoprecipitate the solubilized U937 PBS and also recognize the human protein in an immunoblot analysis. Based on these results, we screened a U937 cell cDNA library with four oligonucleotide probes derived from the CHO sequence. Two of the probes hybridized with several clones that we isolated and sequenced. One of these, h-pPBS11, is 831 nucleotides and contains a full-length representation of human PBS mRNA. The amino acid sequence of human PBS deduced from the cDNA is 79% identical to that reported for rat PBS, however, human PBS contains two cysteines while rat PBS is characterized by the absence of this amino acid. Using the cDNA of human PBS as a probe, the PBS gene was located in the 22q13.3 band of the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号