首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5,7-Dihydroxy-4-methylcoumarin (D4M) is attributed to free radical scavenging effects, with wide application for anti-oxidation. This work aimed to assess D4M's impact on cisplatin-induced ototoxicity. The cell viability was estimated with CCK-8 assay. Apoptosis was detected by the Annexin V-FITC and PI assay. The reactive oxygen species (ROS) level was determined by MitoSOX-Red and CellROX-Green probes. Mitochondrial membrane potential was analyzed with TMRM staining. Immunofluorescence was utilized for hair cells and spiral ganglion neuron detection. Apoptosis-associated proteins were assessed by cleaved caspase-3 and TUNEL staining. These results showed that D4M pretreatment protected hair cells from cisplatin-induced damage, increased cell viability, and decreased apoptosis in House Ear Institute-Organ of Corti1 (HEI-OC1) cells and neonatal mouse cochlear explants. D4M significantly inhibited cisplatin-induced mitochondrial apoptosis and reduced ROS accumulation. In addition, the protective effect of D4M on cisplatin-induced ototoxicity was also confirmed in cochlear hair cells and spiral ganglion neurons in neonatal mice. Mechanistic studies showed that D4M markedly downregulated p-JNK and elevated the expression ratio of p-FoxO1/FoxO1, thereby reducing cisplatin-induced caspase-dependent apoptosis. Meanwhile, D4M-related protection of HEI-OC1 cells was significantly blunted by JNK signaling induction with anisomycin. This study supports the possibility that D4M may be used as a new compound to prevent cisplatin-related hearing loss.  相似文献   

2.
Puerarin, one of the main components of Pueraria lobata, has been reported to possess a wide range of pharmacological activities, including anti-inflammatory, antioxidative and anti-apoptotic effects. However, the role of puerarin in ototoxic drug-induced hair cell injury has not been well characterized. This study explored whether puerarin protects against cisplatin-induced hair cell damage and its potential mechanisms. The viability of puerarin-treated HEI-OC1 cells was assessed by CCK8 assay. Reactive oxygen species (ROS) was estimated with flow cytometric analysis using Cellrox Green fluorescent probe. Apoptosis-related protein levels were detected by western blot analysis. Immunostaining of the organ of Corti was performed to determine mice cochlear hair cell survival. Our results showed that puerarin improved cell viability and suppressed apoptosis in the cisplatin-damaged HEI-OC1 cells and cochlear hair cells. Mechanistic studies revealed that puerarin attenuated mitochondrial apoptosis pathway by regulating apoptotic related proteins, such as Bax and cleaved caspase-3, and attenuated ROS accumulation after cisplatin damage. Moreover, puerarin was involved in regulating the Akt pathway in HEI-OC1 cells in response to cisplatin. Our results demonstrated that puerarin administration decreased the sensitivity to apoptosis dependent on the mitochondrial apoptotic pathway by reducing ROS generation, which could be used as a new protective agent against cisplatin-induced ototoxicity.  相似文献   

3.
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells.  相似文献   

4.
Cisplatin is an effective antineoplastic drug that is widely used to treat various cancers; however, it causes side effects such as ototoxicity via the induction of apoptosis of hair cells in the cochlea. Alpha-lipoic acid (ALA) has been reported to exert a protective effect against both antibiotic-induced and cisplatin-induced hearing loss. Therefore, this study was conducted to (1) elucidate the mechanism of the protective effects of ALA against cisplatin-induced ototoxicity using in vitro and ex vivo culture systems of HEI-OC1 auditory cells and rat cochlear explants and (2) to gain additional insight into the apoptotic mechanism of cisplatin-induced ototoxicity. ALA pretreatment significantly reduced apoptotic cell death of the inner and outer hair cells in cisplatin-treated organ of Corti explants and attenuated ototoxicity via marked inhibition of the increase in the expression of IL-1β and IL-6, the phosphorylation of ERK and p38, the degradation of IκBα, the increase in intracellular levels of ROS, and the activation of caspase-3 in cisplatin-treated HEI-OC1 cells. This study represents the first histological evaluation of the organ of Corti following treatment with ALA, and these results indicate that the protective effects of ALA against cisplatin-induced ototoxicity are mediated via the regulation of MAPKs and proinflammatory cytokines.  相似文献   

5.
6.
Cisplatin, a chemotherapeutic drug that is widely used to treat various cancers, promotes ototoxicity at higher doses. In this study, the effect of epicatechin (EC) on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OC1, and in vivo in zebrafish. Cisplatin promoted apoptosis and altered mitochondrial membrane potential (MMP) in HEI-OC1 cells. EC inhibited cisplatin-induced apoptosis and intracellular reactive oxygen species (ROS) generation. Labeling of zebrafish lateral line hair cells by the fluorescent dye YO-PRO1 was lost upon exposure to cisplatin, and EC protected against this cisplatin-induced loss of labeling in a dose-dependent manner. Scanning and transmission electron micrographs showed that treatment with EC protected against cisplatin-induced loss of kinocilium and stereocilia in zebrafish neuromasts. These results suggest that EC prevents cisplatin-induced ototoxicity by blocking ROS generation and by preventing changes in MMP.  相似文献   

7.
Hydrogen sulfide (H2S) protects cardiomyoblasts against high glucose (HG)-induced injury by inhibiting the activation of p38 mitogen-activated protein kinase (MAPK). This study aims to determine whether the leptin–p38 MAPK pathway is involved in HG-induced injury and whether exogenous H2S prevents the HG-induced insult through inhibition of the leptin–p38 MAPK pathway in H9c2 cells. H9c2 cells were treated with 35 mM glucose (HG) for 24 h to establish a HG-induced cardiomyocyte injury model. Cell viability; mitochondrial membrane potential (ΔΨ m); apoptosis; reactive oxygen species (ROS) level; and leptin, leptin receptor, and p38 MAPK expression level were measured by the methods indicated. The results showed pretreatment of H9c2 cells with NaHS before exposure to HG led to an increase in cell viability, decrease in apoptotic cells, ROS generation, and a loss of ΔΨ m. Exposure of H9c2 cells to 35 mM glucose for 24 h significantly upregulated the expression levels of leptin and leptin receptors. The increased expression levels of leptin and leptin receptors were markedly attenuated by pretreatment with 400 μM NaHS. In addition, the HG-induced increase in phosphorylated (p) p38 MAPK expression was ameliorated by pretreatment with 50 ng/ml leptin antagonist. In conclusion, the present study has demonstrated for the first time that the leptin–p38 MAPK pathway contributes to the HG-induced injury in H9c2 cells and that exogenous H2S protects H9c2 cells against HG-induced injury at least in part by inhibiting the activation of leptin–p38 MAPK pathway.  相似文献   

8.
As a quorum-sensing molecule for bacteria–bacteria communication, N-(3-oxododecanoyl)-homoserine lactone (C12) has been found to possess pro-apoptotic activities in various cell culture models. However, the detailed mechanism of how this important signaling molecule function in the cells of live animals still remains largely unclear. In this study, we systematically investigated the mechanism for C12-mediated apoptosis and studied its anti-tumor effect in Caenorhabditis elegans (C. elegans). Our data demonstrated that C12 increased C. elegans germ cell apoptosis, by triggering mitochondrial outer membrane permeabilization (MOMP) and elevating the reactive oxygen species (ROS) level. Importantly, C12-induced ROS increased the expression of genes critical for DNA damage response (hus-1, clk-2 and cep-1) and genes involved in p38 and JNK/MAPK signaling pathway (nsy-1, sek-1, pmk-1, mkk-4 and jnk-1). Furthermore, C12 failed to induce germ cell apoptosis in animals lacking the expression of each of those genes. Finally, in a C. elegans tumor-like symptom model, C12 significantly suppressed tumor growth through inhibiting the expression of RAS/MAPK pathway genes (let-23/EGFR, let-60/RAS, lin-45/RAF, mek-2/MEK and mpk-1/MAPK). Overall, our results indicate that DNA damage response and MAPK activation triggered by mitochondrial ROS play important roles in C12-induced apoptotic signaling in C. elegans, and RAS/MAPK suppression is involved in the tumor inhibition effect of C12. This study provides in vivo evidence that C12 is a potential candidate for cancer therapeutics by exerting its pro-apoptotic and anti-tumor effects via elevating mitochondria-dependent ROS production.  相似文献   

9.
Arachidonic acid (AA)‐induced apoptotic death of K562 cells (human chronic myeloid leukemic cells) was characteristic of reactive oxygen species (ROS) generation and mitochondrial depolarization. N‐Acetylcysteine pretreatment rescued viability of AA‐treated cells and abolished mitochondrial depolarization. In contrast to no significant changes in phospho‐JNK and phospho‐ERK levels, AA evoked notable activation of p38 MAPK. Unlike that of JNK and p38 MAPK, ERK suppression further reduced the viability of AA‐treated cells. Increases in Fas/FasL protein expression, caspase‐8 activation, the production of tBid and the loss of mitochondrial membrane potential were noted with K562 cells that were treated with a combination of U0126 and AA. Down‐regulation of FADD attenuated U0126‐evoked degradation of procaspase‐8 and Bid. Abolition of p38 MAPK activation abrogated U0126‐elicited Fas/FasL up‐regulation in AA‐treated cells. U0126 pretreatment suppressed c‐Fos phosphorylation but increased p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun protein expression by siRNA suggested that c‐Fos counteracted the effect of c‐Jun on Fas/FasL up‐regulation. Taken together, our data indicate that AA induces the ROS/mitochondria‐dependent death pathway and blocks the ERK pathway which enhances the cytotoxicity of AA through additionally evoking an autocrine Fas‐mediated apoptotic mechanism in K562 cells. J. Cell. Physiol. 222: 625–634, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.  相似文献   

11.
Although receptor-interacting protein 1 (RIP1) is well known as a key mediator in cell survival and death signaling, whether RIP1 directly contributes to chemotherapy response in cancer has not been determined. In this report, we found that, in human lung cancer cells, knockdown of RIP1 substantially increased cytotoxicity induced by the frontline anticancer therapeutic drug cisplatin, which has been associated with robust cellular reactive oxygen species (ROS) accumulation and enhanced apoptosis. Scavenging ROS dramatically protected RIP1 knockdown cells against cisplatin-induced cytotoxicity. Furthermore, we found that, in RIP1 knockdown cells, the expression of the hydrogen peroxide-reducing enzyme catalase was dramatically reduced, which was associated with increased miR-146a expression. Inhibition of microRNA-146a restored catalase expression, suppressed ROS induction, and protected against cytotoxicity in cisplatin-treated RIP1 knockdown cells, suggesting that RIP1 maintains catalase expression to restrain ROS levels in therapy response in cancer cells. Additionally, cisplatin significantly triggered the proteasomal degradation of cellular inhibitor of apoptosis protein 1 and 2 (c-IAP1 and c-IAP2), and X-linked inhibitor of apoptosis (XIAP) in a ROS-dependent manner, and in RIP1 knockdown cells, ectopic expression of c-IAP2 attenuated cisplatin-induced cytotoxicity. Thus, our results establish a chemoresistant role for RIP1 that maintains inhibitor of apoptosis protein (IAP) expression by release of microRNA-146a-mediated catalase suppression, where intervention within this pathway may be exploited for chemosensitization.  相似文献   

12.
BackgroundThe 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown.PurposeThe present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro.MethodsEvaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting.Results3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS.ConclusionROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.  相似文献   

13.
Juric V  Chen CC  Lau LF 《PloS one》2012,7(2):e31303
Although TNFα is a strong inducer of apoptosis, its cytotoxicity in most normal cells in vitro requires blockade of NFκB signaling or inhibition of de novo protein synthesis, typically by the addition of cycloheximide. However, several members of CCN (CYR61/CTGF/NOV) family of extracellular matrix proteins enable TNFα-dependent apoptosis in vitro without inhibiting NFκB or de novo protein synthesis, and CCN1 (CYR61) is essential for optimal TNFα cytotoxicity in vivo. Previous studies showed that CCN1 unmasks the cytotoxicity of TNFα by binding integrins α(v)β(5), α(6)β(1), and the cell surface heparan sulfate proteoglycan syndecan 4 to induce the accumulation of a high level of reactive oxygen species (ROS), leading to a biphasic activation of JNK necessary for apoptosis. Here we show for the first time that CCN1 interacts with the low density lipoprotein receptor-related protein 1 (LRP1) in a protein complex, and that binding to LRP1 is critical for CCN1-induced ROS generation and apoptotic synergism with TNFα. We also found that neutral sphingomyelinase 1 (nSMase1), which contributes to CCN1-induced ROS generation, is required for CCN1/TNFα-induced apoptosis. Furthermore, CCN1 promotes the activation of p53 and p38 MAPK, which mediate enhanced cytochrome c release to amplify the cytotoxicity of TNFα. By contrast, LRP1, nSMase1, p53, and p38 MAPK are not required when TNFα-dependent apoptosis is facilitated by the presence of cycloheximide, indicating that they function in the CCN1 signaling pathway that converges with TNFα-induced signaling events. Since CCN1/CYR61 is a physiological regulator of TNFα cytotoxicity at least in some contexts, these findings may reveal important mediators of TNFα-induced apoptosis in vivo and identify potential therapeutic targets for thwarting TNFα-dependent tissue damage.  相似文献   

14.
Aberrant levels of reactive oxygen species (ROS) rapidly generated from NADPH oxidase (NOX) activation can be cytotoxic due to activating pro-apoptotic signals. However, ROS also induce pro-survival autophagy through the engulfment of damaged mitochondria. This study is aimed at investigating the cytoprotective role of albumin against NOX/ROS-induced autophagy and apoptosis under serum starvation. Serum starvation induced apoptosis following a myeloid cell leukemia sequence 1 (Mcl-1)/Bax imbalance, loss of the mitochondrial transmembrane potential, and caspase activation accompanied by pro-survival autophagy following canonical inhibition of mammalian target of rapamycin complex 1 (mTORC1). Aberrant ROS generation, initially occurring through NOX, facilitated mitochondrial damage, autophagy, and apoptosis. Autophagy additionally regulated the accumulation of ROS-generating mitochondria. NOX/ROS permitted p38 mitogen-activated protein kinase (p38 MAPK)-regulated mitochondrial apoptosis, accompanied by non-canonical induction of autophagy. In addition, activation of glycogen synthase kinase (GSK)-3β by NOX/ROS-inactivated Akt facilitated a decrease in Mcl-1, followed by mitochondrial apoptosis as well as autophagy. Restoring albumin conferred an anti-oxidative effect against serum starvation-deregulated NOX, p38 MAPK, and Akt/GSK-3β/Mcl-1/caspase-3 signaling. Albumin also prevented autophagy by sustaining mTORC1. These results indicate an anti-oxidative role for albumin via preventing NOX/ROS-mediated mitochondrial signaling to stimulate apoptosis as well as autophagy. Autophagy, initially induced by canonical inhibition of mTORC1 and enhanced by non-canonical mitochondrial damage, acts physically as a pro-survival mechanism.  相似文献   

15.
Arsenic is a widespread environmental toxic agent that has been shown to cause diverse tissue and cell damage and at the same time to be an effective anti-cancer therapeutic agent. The objective of this study is to explore the signaling mechanisms involved in arsenic toxicity. We show that the IkappaB kinase beta (IKKbeta) plays a crucial role in protecting cells from arsenic toxicity. Ikkbeta(-)(/)(-) mouse 3T3 fibroblasts have decreased expression of antioxidant genes, such as metallothionein 1 (Mt1). In contrast to wild type and IKKbeta-reconstituted Ikkbeta(-)(/)(-) cells, IKKbeta-null cells display a marked increase in arsenic-induced reactive oxygen species (ROS) accumulation, which leads to activation of the MKK4-c-Jun NH(2)-terminal kinase (JNK) pathway, c-Jun phosphorylation, and apoptosis. Pretreatment with the antioxidant N-acetylcysteine (NAC) and expression of MT1 in the Ikkbeta(-)(/)(-) cells prevented JNK activation; moreover, NAC pretreatment, MT1 expression, MKK4 ablation, and JNK inhibition all protected cells from death induced by arsenic. Our data show that two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract ROS accumulation, and second, when this pathway fails, excessive ROS leads to activation of the MKK4-JNK pathway, resulting in apoptosis.  相似文献   

16.
α-Mangostin is a dietary xanthone that has been shown to have anti-cancer and anti-proliferative properties in various types of human cancer cells. This study investigates the molecular mechanism of the apoptosis-inducing effects of α-mangostin on human hepatocellular carcinoma (HCC) cells. We observed that α-mangostin reduces the viability of HCC cells in a dose- and time-dependent manner. α-Mangostin mediated apoptosis of SK-Hep-1 cells is accompanied by nuclear chromatin condensation and cell cycle arrest in the sub-G1 phases as well as phosphatidylserine exposure. Furthermore, α-mangostin triggered the mitochondrial caspase apoptotic pathway, as indicated by the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, and the regulation of B cell lymphoma 2 family member expression. Moreover, α-mangostin inhibited a sustained activation of p38 mitogen-activated protein kinase (MAPK) phosphorylation, and treatment with a p38 MAPK inhibitor enhanced α-mangostin-induced caspase activation and apoptosis in SK-Hep-1 cells. In vivo xenograft mice experiments revealed that α-mangostin significantly reduced tumor growth and weight in mice inoculated with SK-Hep-1 cells. These findings demonstrate that α-mangostin induces mitochondria-mediated apoptosis through inactivation of the p38 MAPK signaling pathway and that α-mangostin inhibits the in vivo tumor growth of SK-Hep-1 xenograft mice.  相似文献   

17.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

18.
In this present study, we show that 3HK induced reactive oxygen species (ROS) accumulation and after caspase activation lead to apoptotic cell death. Pretreatment with N-acetylcysteine (NAC), an effective antioxidant, significantly attenuated 3HK-induced apoptosis by way of a reduction of ROS accumulation and caspase activity. SKN-SN cells were protected from 3HK-induced cytotoxicity by heat shock protein (HSP). HSP effectively attenuated 3HK-mediated ROS accumulation and apoptosis. In addition, the protective effect of HSP90 was abolished by pretreatment with HSP90 anti-sense oligonucleotides, but not when pretreated with anti-senses for other HSPs. These results suggest that HSP90 protects SKN-SH cells from 3HK-induced cytotoxicity by reducing ROS levels and caspase activity.  相似文献   

19.
Okadaic acid (OA) is a specific and potent protein phosphatase inhibitor and tumor promoter. The present study establishes the role of reactive oxygen species (ROS) and mitogen activated protein kinases in cell death induced by okadaic acid. The study showed that okadaic acid is cytotoxic at 10 nM with an IC50 of 100 nM in U-937 cells. The CVDE assay and mitochondrial dehydrogenase assay showed a time dependent cytotoxicity. The phase contrast visualization of the OA treated cells showed the apoptotic morphology and was confirmed with esterase staining for plasma membrane integrity. OA activated caspases-7, 9 and 3, PARP cleavage and induced nuclear damage in a time and dose dependent manner. Compromised mitochondrial membrane potential, release of cytochrome-c and apoptosis inducing factor confirms the involvement of mitochondria. A time dependent decrease in glutathione levels and a dose dependent increase in ROS with maximum at 30 min were observed. ROS scavenger-N-acetyl cysteine, mitochondrial stabilizer-cyclosporin-A, and broad spectrum caspase inhibitor Z-VAD-FMK inhibited the OA induced caspase-3 activation, DNA damage and cell death but caspase-8 inhibitor had no effect. OA activated p38 MAPK and JNK in a time dependent manner, but not ERK½. MAP kinase inhibitors SB203580, SP600125 and PD98059 confirm the role of p38 MAPK and JNK in OA induced caspase-3 activation and cell death. Over all, our results indicate that OA induces cell death by generation of ROS, and activation of p38 MAPK and JNK, and executed through mitochondrial mediated caspase pathway.  相似文献   

20.
Apoptosis requires tightly regulated cell death pathways. The signaling pathways that trigger a cell to undergo apoptosis after UV radiation are cell type specific and are currently being defined. Here, we have used pharmacological and genetic tools to demonstrate the decisive part of the mitochondrial pathway in UVC-induced apoptosis in mouse embryo fibroblasts (MEFs). UVC-induced apoptosis proceeded independent of the activation of death receptor components. In contrast, soon after UV radiation, MAPK activation and generation of reactive oxygen species (ROS) increased, followed by a decline in mitochondrial membrane potential (MMP) and cytochrome c release, as well as activation of caspase-9 and -3 and the upregulation of p47-phox. Deficiency of apaf-1, a critical member of the apoptosome, dramatically abolished all the UV-induced signal deterioration and cell death. In parallel, UVC-induced apoptosis was largely attenuated by either DN-caspase-9 or Bcl-X(L) overexpression. Pretreatment of cells with N-acetylcysteine or catalase but not Tempol decreased UVC-induced MAPK activation and apoptosis. Inhibition of JNK and caspase attenuated p47-phox upregulation. Altogether, we have for the first time demonstrated the critical role of Apaf-1 in the regulation of MAPK, ROS, and MMP in UVC-radiated MEFs and propose that the amplification feedback loop among mitochondrial signal molecules culminates in the demise of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号