首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) may deliver therapeutic effects that are comparable to their parental cells. MSC-EVs are promising agents for the treatment of a variety of diseases. To reach the intermediate goal of clinically testing safety and efficacy of EVs, strategies should strive for efficient translation of current EV research. On the basis of our in vitro an in vivo findings regarding the biological actions of EVs and our experience in manufacturing biological stem cell therapeutics for routine use and clinical testing, we discuss strategies of manufacturing and quality control of umbilical cord–derived MSC-EVs. We introduce guidelines of good manufacturing practice and their practicability along the path from the laboratory to the patient. We present aspects of manufacturing and final product quality testing and highlight the principle of “The process is the product.” The approach presented in this perspective article may facilitate translational research during the development of complex biological EV-based therapeutics in a very early stage of manufacturing as well as during early clinical safety and proof-of-concept testing.  相似文献   

2.
Mesenchymal stromal cells (MSCs) can effectively contribute to tissue regeneration inside the inflammatory microenvironment mostly through modulating immune responses. MSC-derived extracellular vesicles (MSC-EVs) display immunoregulatory functions similar to parent cells. Interactions between MSC-EVs and immune cells make them an ideal therapeutic candidate for infectious, inflammatory, and autoimmune diseases. These properties of MSC-EVs have encouraged researchers to perform extensive studies on multiple factors that mediate MSC-EVs immunomodulatory effects. Investigation of proteins involved in the complex interplay of MSC-EVs and immune cells may help us to better understand their functions. Here, we performed a comprehensive proteomic analysis of MSC-EVs that was previously reported by ExoCarta database. A total of 938 proteins were identified as MSC-EV proteome using quantitative proteomics techniques. Kyoto Encyclopedia of Genes and Genomes analysis demonstrates that ECM–receptor interaction, focal adhesion, and disease-specific pathways are enriched in MSC-EVs. By detail analysis of proteins presence in immune system process, we found that expression of some cytokines, chemokines, and chemokine receptors such as IL10, HGF, LIF, CCL2, VEGFC, and CCL20, which leads to migration of MSC-EVs to injured sites, suppression of inflammation and promotion of regeneration in inflammatory and autoimmune diseases. Also, some chemoattractant proteins such as CXCL2, CXCL8, CXCL16, DEFA1, HERC5, and IFITM2 were found in MSC-EV proteome. They may actively recruit immune cells to the proximity of MSC or MSC-EVs, may result in boosting immune response under specific circumstances, and may have protective role in infectious diseases. In this review, we summarize available information about immunomodulation of MSC-EVs with particular emphasis on their proteomics analysis.  相似文献   

3.
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.  相似文献   

4.
《Cytotherapy》2023,25(8):837-846
Musculoskeletal disorders are one of the biggest contributors to morbidity and place an enormous burden on the health care system in an aging population. Owing to their immunomodulatory and regenerative properties, mesenchymal stromal/stem cells (MSCs) have demonstrated therapeutic efficacy for treatment of a wide variety of conditions, including musculoskeletal disorders. Although MSCs were originally thought to differentiate and replace injured/diseased tissues, it is now accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly extracellular vesicles (EVs). Endowed with a diverse cargo of bioactive lipids, proteins, nucleic acids and metabolites, MSC-EVs have been shown to elicit diverse cellular responses and interact with many cell types needed in tissue repair. The present review aims to summarize the latest advances in the use of native MSC-EVs for musculoskeletal regeneration, examine the cargo molecules and mechanisms underlying their therapeutic effects, and discuss the progress and challenges in their translation to the clinic.  相似文献   

5.
The therapeutic potential of naturally secreted micro- and nanoscale extracellular vesicles (EVs) makes them attractive candidates for regenerative medicine and pharmaceutical science applications. To date, the results of numerous publications have shown the practicality of using EVs to replace mesenchymal stromal cells (MSCs) or liposomes. This article presents a systematic review of pre-clinical studies conducted over the past decade of MSC-derived EVs (MSC-EVs) used in animal models of disease. The authors searched the relevant literature in the PubMed and Scopus databases (9358 articles), and 690 articles met the inclusion criteria. The eligible articles were placed in the following disease categories: autoimmune, brain, cancer, eye, gastrointestinal, heart, inflammation/transplantation, liver, musculoskeletal, pancreas, spinal cord and peripheral nervous system, respiratory system, reproductive system, skin, urinary system and vascular-related diseases. Next, the eligible articles were assessed for the rate of publication and global distribution, methodology of EV isolation and characterization, route of MSC-EV administration, length of follow-up, source of MSCs and animal species. The current review classifies and critically discusses the technical aspects of these MSC-EV animal studies and discusses potential relationships between methodological details and the effectiveness of MSC-EVs as reported by these pre-clinical studies.  相似文献   

6.
7.
Although high-density lipoprotein (HDL) infusion therapy now seems to be a promising therapy for the treatment of several diseases, including atherosclerosis, myocardial infarction, sepsis, and diabetes, there is a real need for more information on the production, quality, and safety of reconstituted HDL (rHDL). In this context, we described a production-scale preparation of rHDL and examined the reproducibility of the process and product, and its shelf stability over a 24-month period. Apolipoprotein A-I (apoA-I) was isolated from precipitates IV (by plasma fractionation) using polyethylene glycol, ethanol, pH precipitation, and ion-exchange chromatography. This manufacturing process included 3 virus-elimination steps consisting of ethanol precipitation, pasteurization, and nanofiltration. HDLs were then reconstituted through cholate dialysis using soybean phosphatidylcholine. The product released data from 3 separate rHDL production were adequate to fulfill the required specification and admitted range. Following lyophilization, the products were stable in the presence of sucrose for at least 24 months. Redissolved rHDLs were disc-shaped and had sizes ranging from 10 to 20 nm. Studies on structure-function relationships provided evidence that these rHDLs could be used as potential therapeutic agents for acute coronary syndrome and inflammatory diseases.  相似文献   

8.
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.  相似文献   

9.
Cancer stem cells(CSCs) are maintained by theirsomatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondriatargeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondriatargeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.  相似文献   

10.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.  相似文献   

11.
目的探讨人脐带间充质干细胞(MSCs)源性细胞外囊泡Oct-4 mRNA对受损的肾小管上皮细胞修复的作用及相关机制。 方法将培养的缺氧损伤肾小管上皮细胞置于含有人脐带MSCs细胞外囊泡及不同对照培养液的培养腔室玻片上孵育48?h,应用BrdU及TUNEL染色,检测各组细胞增殖或凋亡情况。将急性肾损伤模型小鼠分为4组:空白组、EVs组、Oct-4过表达组、Oct-4低敲组。并按照分组分别注射磷酸盐缓冲液(Vehicle),人脐带MSCs细胞外囊泡(EVs),过表达Oct-4基因的人脐带MSCs细胞外囊泡(EVs?+?Oct-4)及敲除Oct-4基因的人脐带MSCs外囊泡(EVs-Oct-4),并在注射48?h及2周后采血测肌酐(Crea)及尿素氮(BUN),了解肾功能变化;对各组上述处理后的肾组织应用TUNEL与增殖细胞核抗原表达量检测各组肾脏细胞凋亡与增殖情况;通过Masson染色检测了各组肾脏纤维化程度;通过PCR探索肾损伤后肾组织细胞Snail基因的表达变化。数据分析采用方差分析和SNK-q检验。 结果EVs?+ Oct-4处理缺氧的肾小管上皮细胞48?h后,TUNEL染色显示具有最少的凋亡细胞数(0~1)/?HPF,BrdU显示有最多的增殖细胞(7±2)/HPF。EVs,EV-Oct-4以及Vehicle对体外缺氧肾小管上皮细胞的上述作用依次减弱(P?相似文献   

12.
As a therapeutic agent in thrombosis the fibrinolytic enzymes are of interest and the search for a new enzyme continues. A strong fibrin-specific fibrinolytic enzyme was purified from the cell-free spent broth of thermophilic Streptomyces megasporus strain SD5. The crude enzyme was concentrated using ammonium sulphate, dialysis and lyophilization. Approximately 0.11 mg ml(-1) crude enzyme with a specific activity of 4.2 U microg(-1) was obtained. Post-electrophoretic reactivity revealed a monomeric form of the enzyme with a molecular weight of 35 kDa. The optimum pH and temperature for production of the enzyme were 8 and 55 degrees C, respectively. The enzyme was resistant to a broad range of pH ranging from 6 to 9 and temperature ranging from 37 to 60 degrees C. The enzyme was a chymotrypsin-like serine peptidase and the activity of the enzyme was N-terminal-dependent. The in vitro clot lysis by the enzyme at 37 degrees C was encouraging.  相似文献   

13.
The purpose of this study was to develop a new therapeutic approach for atorvastatin (ATV) adopting nanostructured polymeric micelles for its controlled delivery to the cancer cells. Amphiphilic block copolymers of stearyl chitosan (SC) and sulfated stearyl chitosan (S-SC) that could self assemble to form polymeric micelles with different degree of substitution (DS) were synthesized and characterized. The synthesized chitosan derivatives were able to self assemble and form micelles encapsulating ATV with critical micellar concentrations ranging from 6.9 to 21μg/ml, drug-loading ranging from 40% to 84.1% and encapsulation efficiency ranging from 10.4% to 35%. ATV caused a significant decrease in particle size and zeta potential of both SC and S-SC micelles. Micelles encapsulating ATV exhibited a sustained release and more cytotoxic activity against MCF 7 and HCT 116 cell lines than ATV alone. The 50% cellular growth inhibition (IC50%) of the drug decreased from 10.4 to 3.7 in case of MCF 7 and from 9.4 to 3.4 in case of HCT 116 after its loading in micelles. These results indicate that SC ATV polymeric micelles can be considered as a promising system for site specific controlled delivery of ATV to tumor cells.  相似文献   

14.
15.
The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.  相似文献   

16.
The mechanisms of systemic autoimmune disease are poorly understood and available therapies often lead to immunosuppressive conditions. We describe here a new model of autoantigen-specific immunotherapy based on the sites of autoantigen presentation in systemic autoimmune disease. Nucleosomes are one of the well-characterized autoantigens. We found relative splenic localization of the stimulative capacity for nucleosome-specific T cells in (NZB x NZW)F(1) (NZB/W F(1)) lupus-prone mice. Splenic dendritic cells (DCs) from NZB/W F(1) mice spontaneously stimulate nucleosome-specific T cells to a much greater degree than both DCs from normal mice and DCs from the lymph nodes of NZB/W F(1) mice. This leads to a strategy for the local delivery of therapeutic molecules using autoantigen-specific T cells. Nucleosome-specific regulatory T cells engineered by triple gene transfer (TCR-alpha, TCR-beta, and CTLA4Ig) accumulated in the spleen and suppressed the related pathogenic autoantibody production. Nephritis was drastically suppressed without impairing the T cell-dependent humoral immune responses. Thus, autoantigen-specific regulatory T cells engineered by multiple gene transfer is a promising strategy for treating autoimmune diseases.  相似文献   

17.
Hepatocyte growth factor (HGF) and its receptor MET are essential during embryonic development and throughout postnatal life. However, aberrant MET activation, due to overexpression, mutations, or autocrine ligand production, contributes to the development and progression of a variety of human cancers, often being associated with poor clinical outcome and drug resistance. B cell malignancies arise from B cells that are clonally expanded at different stages of differentiation. Despite major therapeutic advances, most mature B cell malignancies remain incurable and biologically-oriented therapeutic strategies are urgently needed. This review addresses the role of the HGF/MET pathway during B cell development and discusses how its aberrant activation contributes to the development of B cell lymphoproliferative disorders, with particular emphasis on multiple myeloma and diffuse large B cell lymphoma. These insights, combined with the recent development of clinical-grade agents targeting the MET pathway, provide the rationale to envision the HGF/MET pathway as a new promising target for the treatment of B cell malignancies.  相似文献   

18.
能够生产有功用的治疗性蛋白的一个重要前提是获得稳定的重组蛋白高表达细胞株,然而筛选一个能够持续稳定表达外源蛋白的重组细胞株是费时费力的过程。有多篇文献报道了重组蛋白细胞株表达的不稳定性。位置效应是高表达细胞株不稳定性的重要因素,克服或利用位置效应是当前获得稳定高表达重组蛋白细胞株的有效途径。为解决外源基因插入的随机性所带来的不可预知的后果,可以事先在CHO细胞基因组中筛选转录热点区域,再通过位点特异性或同源重组的方式,实现外源基因的定点整合。各种调节位置效应的DNA元件陆续被发现,可以利用它们去调控基因表达及增加细胞株的稳定性。  相似文献   

19.
The relatively recent recognition of the major role played by antimicrobial peptides (AMPs) in sustaining an effective host response to immune challenges was greatly influenced by studies of amphibian peptides. AMPs are also widely regarded as a potential source of future antibiotics owing to a remarkable set of advantageous properties ranging from molecular simplicity to low-resistance swift-kill of a broad range of microbial cells. However, the peptide formula per se, represents less than ideal drug candidates, namely because of poor bioavailability issues, potential immunogenicity, optional toxicity and high production costs. To address these issues, synthetic peptides have been designed, reproducing the critical peptide biophysical characteristic in unnatural sequence-specific oligomers. Thus, the use of peptidomimetics to overcome the limitations inherent to peptides physical characteristics is becoming an important and promising approach for improving the therapeutic potential of AMPs. Here, we review most recent advances in the design strategies and the biophysical properties of the main classes of mimics to natural AMPs, emphasizing the importance of structure-activity relationship studies in fine-tuning of their physicochemical attributes for improved antimicrobial properties.  相似文献   

20.
We analyzed genetic structure and diversity among eight populations of popcorn, using SSR loci as genetic markers. Our objectives were to select SSR loci that could be used to estimate genetic diversity within popcorn populations, and to analyze the genetic structure of promising populations with high levels of heterozygosity that could be used in breeding programs. Fifty-seven alleles (3.7 alleles per locus) were detected; the highest effective number of alleles (4.21) and the highest gene diversity (0.763) were found for the Umc2226 locus. A very high level of population differentiation was found (F(ST) = 0.3664), with F(ST) for each locus ranging from 0.1029 (Umc1664) to 0.6010 (Umc2350). This analysis allowed us to identify SSR loci with high levels of heterozygosity and heterozygous varieties, which could be selected for production of inbred lines and for developing new cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号