首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
人胰腺细胞培养及胰岛素的分泌王石泉,汤国枝,张鹤云,李敏意,金以丰(南京大学生物化学系,南京210093)胰岛β细胞的体外培养获得胰岛素已有报道,但大多采用新生大鼠胰腺,且β细胞成活率低,分泌量少,还处在研究阶段[1-4].本实验采用人胰腺细胞做较大...  相似文献   

2.
胰腺β细胞的离子通道和胰岛素分泌   总被引:1,自引:0,他引:1  
娄雪林  徐涛  周专 《生命的化学》2001,21(2):150-152
1 .胰腺β细胞膜上几种重要的离子通道和动作电位β细胞内的离子通道特性和胰岛素分泌的机制研究是深入了解糖尿病的基础。 2 0世纪 70年代初 ,胰岛 (islet)电生理研究表明 ,葡萄糖刺激伴随着β细胞膜电势的变化 ,并推测其与胰岛素分泌相关[1] 。 2 0世纪 70年代末 ,Neher等[2 ] 发明了膜片钳记录技术 ,大大促进了包括β细胞在内的单细胞电生理的研究。1 .1 K 通道   2 0世纪 80年代前期 ,各种不同膜片钳构型的研究都表明 ,葡萄糖刺激下β细胞的膜电势变化源于膜上一种K 通道活性的改变 ,因其可直接被ATP关闭而被命名为…  相似文献   

3.
Chronic adrenergic stimulation is the dominant factor in impairment of the β-cell function. Sustained adrenergic exposure generates dysregulated insulin secretion in fetal sheep. Similar results have been shown in Min6 under the elevated epinephrine condition, but impairments after adrenergic removal are still unknown and a high rate of proliferation in Min6 has been ignored. Therefore, we incubated primary rats’ islets with half maximal inhibitory concentrations of epinephrine for three days, then determined their insulin secretion responsiveness and related signals two days after removal of adrenaline via radioimmunoassay and qPCR. Insulin secretion was not different between the exposure group (1.07 ± 0.04 ng/islet/h) and control (1.23 ± 0.17 ng/islet/h), but total islet insulin content after treatment (5.46 ± 0.87 ng/islet/h) was higher than control (3.17 ± 0.22 ng/islet/h, p < 0.05), and the fractional insulin release was 36% (p < 0.05) lower after the treatment. Meanwhile, the mRNA expression of Gαs, Gαz and Gβ1-2 decreased by 42.8% 19.4% and 24.8%, respectively (p < 0.05). Uncoupling protein 2 (Ucp2), sulphonylurea receptor 1 (Sur1) and superoxide dismutase 2 (Sod2) were significantly reduced (38.5%, 23.8% and 53.8%, p < 0.05). Chronic adrenergic exposure could impair insulin responsiveness in primary pancreatic islets. Decreased G proteins and Sur1 expression affect the regulation of insulin secretion. In conclusion, the sustained under-expression of Ucp2 and Sod2 may further change the function of β-cell, which helps to understand the long-term adrenergic adaptation of pancreatic β-cell.  相似文献   

4.
5.
6.
实验以大鼠胰腺β细胞为研究对象,采用荧光测钙和全细胞膜片钳膜电容测量技术,研究 ATP 对胞内钙离子信号和细胞分泌的影响,并初步探讨了其作用机制 . 实验表明:胞外 ATP 刺激通过动员细胞内 thapsigargin 敏感的钙库 Ca2+ 释放,使大鼠胰腺β细胞内的游离钙离子浓度显著升高,细胞外的 ATP 信号对β细胞胰岛素分泌有双向调节作用,其一,主要通过降低去极化引起的钙电流而对β细胞胰岛素分泌产生较弱的抑制作用,其二,细胞在静息状态下, ATP 通过动员胞内钙库的 Ca2+ 释放使胞浆中的钙离子浓度显著增加,触发β细胞强烈分泌胰岛素 . ATP 的这种双向调节可能对胰岛素分泌的精确调控具有重要的生理意义 .  相似文献   

7.
Insulin secretion has only exceptionally been investigated in pancreatic islets from healthy young children. It remains unclear whether those islets behave like adult islets despite substantial differences in cellular composition and higher β-cell replication rates. Islets were isolated from 5 infants/toddlers (11–36 month-old) and perifused to characterize their dynamics of insulin secretion when subjected to various stimuli and inhibitors. Their insulin responses were compared to those previously reported for similarly treated adult islets. Qualitatively, infant islets responded like adult islets to stimulation by glucose, tolbutamide, forskolin (to increase cAMP), arginine and the combination of leucine and glutamine, and to inhibition by diazoxide and CaCl2 omission. This similarity included the concentration-dependency and biphasic pattern of glucose-induced insulin secretion, the dynamics of the responses to non-glucose stimuli and metabolic amplification of these responses. The insulin content was not different, but fractional insulin secretion rates were lower in infant than adult islets irrespective of the stimulus. However, the stimulation index was similar because basal secretion rates were also lower in infant islets. In conclusion, human β-cells are functionally mature by the age of one year, before expansion of their mass is complete. Their responsiveness (stimulation index) to all stimuli is not smaller than that of adult β-cells. Yet, under basal and stimulated conditions, they secrete smaller proportions of their insulin stores in keeping with smaller in vivo insulin needs during infancy.  相似文献   

8.
9.
Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 ?/? mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 ?/? mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.  相似文献   

10.
11.
12.
目的:关于lncRNA TUG1在体内外胰岛β细胞分泌胰岛素中的功能研究。方法:通过qRT-PCR检测lncRNA TUG1在小鼠胰腺,脑,肌肉等不同组织的表达。体外干扰MIN6胰岛素瘤细胞系lncRNA TUG1后,通过MTT法和流式细胞计数检测对β细胞增殖和周期影响;通过GSIS检测β细胞不同糖浓度刺激下的胰岛素分泌水平;采用qRT-PCR检测β细胞Insulin及相关特异转录因子Pdx1,Maf A,Neuro D,Glut2的变化;外源性封闭正常成年小鼠中lncRNA TUG1的表达后,采用ELISA法检测对血清胰岛素的影响,采用免疫组化检测对胰岛形态的影响。结果:lncRNA TUG1在胰腺组织中高度表达。干扰lncRNA TUG1后可致β细胞增殖活力受到抑制,糖刺激下的胰岛素分泌水平下降,Insulin及相关特异转录因子Pdx1,Maf A,Neuro D,Glut2减少;外源性封闭正常成年小鼠中lncRNA TUG1的表达后,血清胰岛素减少,胰岛面积减小。结论:干扰lncRNA TUG1后在体内外均可导致胰腺β细胞分泌胰岛素减少,提示lncRNA TUG1可在体内外影响β细胞的胰岛素分泌,lncRNA TUG1是调节胰岛β细胞功能的因素之一。  相似文献   

13.
14.
The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated approach to reproducibly downregulate ZnT8 mRNA expression by >90% in the INS-1 pancreatic beta cell line. The ZnT8-downregulated cells exhibited diminished uptake of exogenous zinc, as determined using the zinc-sensitive reporter dye, zinquin. ZnT8-downregulated cells showed reduced insulin content and decreased insulin secretion (expressed as percent of total insulin content) in response to hyperglycemic stimulus, as determined by insulin immunoassay. ZnT8-depleted cells also showed fewer dense-core vesicles via electron microscopy. These data indicate that reduced ZnT8 expression in cultured pancreatic beta cells gives rise to a reduced insulin response to hyperglycemia. In addition, although we provide no direct evidence, these data suggest that an SLC30A8 expression-level polymorphism could affect insulin secretion and the glycemic response in vivo.  相似文献   

15.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

16.
Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion.  相似文献   

17.
18.
目的探讨干预脂毒性改善糖尿病大鼠胰岛分泌功能及氧化应激损害的机制。方法将大鼠分为4组①正常组(NC),全程普通饲料喂养;②高脂组(HF),全程高脂饲料喂养。糖尿病组,高脂饲料喂养8周后腹腔注射低剂量STZ(30mg/kg),48h后行OGTT试验判断成模情况后分组。③糖尿病对照组(DM),不给予药物干预;④血脂干预组(SIM),灌胃辛伐他汀5mg/(kg.d)4周干预脂毒性。通过免疫组化染色观察胰岛B、A细胞形态学特点,RT-PCR测定胰腺内胰岛素原mRNA表达水平,DHE荧光染色检测胰岛中活性氧化产物ROS水平。结果与糖尿病对照组相比,干预脂毒性4周后血清胆固醇(TC)和甘油三酯(TG)水平分别下降了22.9%(P〈0.01)和57.0%(P〈0.05)。OGTT血糖水平均显著下降(P〈0.01)。胰岛中B细胞相对量是对照组的2.6倍(P〈0.01),B细胞胞质内胰岛素水平增加了26.5%(P〈0.05),胰岛素原mRNA表达升高18.3%(P〈0.01);A细胞相对量减少了50%(P〈0.01)。血清丙二醛(MDA)水平和胰腺中ROS表达显著下降。结论辛伐他汀干预脂毒性4周可以显著改善糖尿病大鼠胰岛分泌功能和氧化应激损害。  相似文献   

19.
目的:从c-met对胰岛β细胞增殖,细胞周期、糖耐受和对GLUT2的表达影响三个方面探讨c-met在胰岛β细胞功能的影响及相关机制。方法:在大鼠胰岛β细胞系INS-1中运用RNA干扰技术(RNAi)抑制HGF的特异性受体c-met蛋白的表达,检测其在正常的生理状况下对成熟的胰岛β细胞增殖以及功能维持的作用。结果:c-met蛋白对成熟的胰岛β细胞的增殖与周期并没有显著影响,但对于β细胞的功能维持具有重要意义。结论:通过调节GLUT2蛋白来维持β细胞的胰岛素分泌功能,有助于进一步阐明HGF/c-met通路在胰岛β细胞功能损伤的分子机制,从而为糖尿病的预防和治疗提供新的理论依据。  相似文献   

20.
GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号