首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Background

Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105?years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity.

Methods

Plasma proteins from Japanese semi-supercentenarians (SSCs, 106–109?years), aged controls (70–88?years), and young controls (20–38?years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured.

Results

We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases.

Conclusions

Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity.

General significance

We found abundant glycans in SSCs, which may be associated with human longevity.  相似文献   

2.
BackgroundSince glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity.Scope of reviewWe herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes.Major conclusionsGlycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity.General significanceAlterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

3.
We previously showed that a small proportion of the O-linked oligosaccharide chains of human glycophorin A (GPA) contains blood group A, B or H antigens, relevant to the ABO phenotype of the donor. The structures of these minor O-glycans have been established (Podbielska et al. (2004) [20]). By the use of immunochemical methods we obtained results indicating that ABH blood group epitopes are also present in N-glycan of human GPA (Podbielska and Krotkiewski (2000) [22]). In the present paper we report a detailed analysis of GPA N-glycans using nanoflow electrospray ionization tandem mass spectrometry. N-glycans containing A-, B- and H-related sequences were identified in GPA preparations obtained from erythrocytes of blood group A, B and O donors, respectively. The ABH blood group epitopes are present on one antenna of the N-glycan, whereas a known sialylated sequence NeuAcα2-6Galβ1-4GlcNAc- occurs on the other antenna and other details are in agreement with the known major structure of the GPA N-glycan. In the bulk of the biantennary sialylated N-glycans released from GPA preparations, the blood group ABH epitopes-containing N-glycans, similarly O-glycans, constituted only a minor part. The amount relative to other N-glycans was estimated to 2-6% of blood group H epitope-containing glycans released from GPA-O preparations and 1-2% of blood group A and B epitope-containing glycans, released from GPA-A and GPA-B, respectively.  相似文献   

4.
BackgroundTerminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLeX). SLeX overexpression is associated with tumor aggressive phenotype and patients' poor prognosis.MethodsMKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors.ResultsOur results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from α2-6 towards α2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLeX and the concomitant activation. SLeX and RON co-expression was validated in gastric tumors.ConclusionThe overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation.General significanceThis study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

5.
Recently, our group reported the expression of recombinant human erythropoietin in goat milk (rhEPO-milk) as well as in the mammary epithelial cell line GMGE (EPO-GMGE) by cell culture using the adenoviral transduction system. N-Glycosylation characterization of rhEPO-milk by Normal-Phase HPLC profiling of the fluorophore, 4-aminobenzoic acid-labeled enzymatically released N-glycan pool from rhEPO-goat milk, combined with MALDI, ESI-MS and LC/MS, revealed that low branched, core-fucosylated, N-glycans predominate. The labeled N-glycans were separated into neutral and charged fractions by anion exchange chromatography and the charged N-glycans were found to be mostly α2,6-monosialylated with Neu5Ac or Neu5Gc in a ratio of 1:1. Unlike the N-glycans from rhEPO produced in CHO cells, where the glycans are multiantennary highly sialylated, core-fucosylated oligosaccahrides, or even in the goat mammary gland epithelial cell line cultured in vitro in which multiantennary, core- and outer-arm fucosylated, monosialylated N-glycans are the most abundant species, a large proportion of the N-glycans from rhEPO-milk were monosialylated, biantennary, antennae mostly terminating with the more unusual GalNAc-GlcNAc motive and without outer-arm fucosylation. These findings, emphasizing the difference in the N-glycan repertoire between the rhEPO-milk and EPO-GMGE, are consistent with the principle that glycosylation is cell-type dependent and that the cell environment is crucial as well.  相似文献   

6.
The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn167. Highly sialylated O-glycans were found to be present in the Thr110–Thr124 region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.  相似文献   

7.

Background

The aims of this study were to determine the change of whole-serum N-glycan profile in ulcerative colitis (UC) patients and to investigate its clinical utility.

Methods

We collected serum from 75 UC patients at the time of admission and the same number of age/sex-matched healthy volunteers. Serum glycan profile was measured by comprehensive quantitative high-throughput glycome analysis and was compared with disease activity and prognosis.

Results

Out of 61 glycans detected, 24 were differentially expressed in UC patients. Pathway analysis demonstrated that highly sialylated multi-branched glycans and agalactosyl bi-antennary glycans were elevated in UC patients; in addition, the glycan ratio m/z 2378/1914, which also increased in UC, showed the highest Area under Receiver Operating Characteristic curve (0.923) for the diagnosis of UC. Highly sialylated multi-branched glycans and the glycan ratio m/z 2378/1914 were higher in the patients with total colitis, Clinical Activity Index >10, Mayo endoscopic score 3, or a steroid-refractory status. In particular, the glycan ratio m/z 2378/1914 (above median) was an independent prognostic factor for the need for an operation (hazard ratio, 2.67; 95% confidence interval, 1.04–7.84).

Conclusions

Whole-serum glycan profiles revealed that the glycan ratio m/z 2378/1914 and highly sialylated multi-branched glycans increase in UC patients, and are correlated with disease activity. The glycan ratio m/z 2378/1914 was an independent predictive factor of the prognosis of UC.  相似文献   

8.
Quality control and assurance of glycan profiles of a recombinant glycoprotein from lot to lot is a critical issue in the pharmaceutical industry. To develop an easy and simple quantitative and qualitative glycan profile method based on matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), the modification with Girard’s reagent T (GT) was exploited. Because GT-derivatized quantification of oligosaccharides using MALDI-TOF MS is possible only with neutral glycans, sialylated glycans are not subjected to quantitative analysis with MALDI-TOF MS. To solve this problem, mild methyl esterification and subsequent GT derivatization were employed, enabling us to perform rapid qualitative and quantitative analysis of sialylated and neutral N-linked oligosaccharides using MALDI-TOF MS. This modified method was used in the comparative quantification of N-glycans from the recombinant therapeutic glycoprotein expressed in two different Chinese hamster ovary (CHO) cell lines. The percentages of sialylated N-glycans to total were 22.5 and 5.2% in CHO-I and CHO-II cells, respectively, resulting in a significant difference in the biological activity of the recombinant glycoprotein.  相似文献   

9.
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.  相似文献   

10.
Cholera toxin B subunit (CTB) is widely used as a carrier molecule and mucosal adjuvant and for the expression of fusion proteins of interest. CTB-fusion proteins are also expressed in plants, but the N-glycan structures of CTB have not been clarified. To gain insights into the N-glycosylation and N-glycans of CTB expressed in plants, we expressed CTB in rice seeds with an N-terminal glutelin signal and a C-terminal KDEL sequence and analyzed its N-glycosylation and N-glycan structures. CTB was successfully expressed in rice seeds in two forms: a form with N-glycosylation at Asn32 that included both plant-specific N-glycans and small oligomannosidic N-glycans and a non-N-glycosylated form. N-Glycan analysis of CTB showed that approximately 50 % of the N-glycans had plant-specific M3FX structures and that almost none of the N-glycans was of high-mannose-type N-glycan even though the CTB expressed in rice seeds contains a C-terminal KDEL sequence. These results suggest that the CTB expressed in rice was N-glycosylated through the endoplasmic reticulum (ER) and Golgi N-glycosylation machinery without the ER retrieval.  相似文献   

11.
Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose1–3fucose0–1N-acetylglucosamine2Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation.  相似文献   

12.
Using samples from the New England Centenarian Study (NECS), we sought to characterize the serum proteome of 77 centenarians, 82 centenarians'' offspring, and 65 age‐matched controls of the offspring (mean ages: 105, 80, and 79 years). We identified 1312 proteins that significantly differ between centenarians and their offspring and controls (FDR < 1%), and two different protein signatures that predict longer survival in centenarians and in younger people. By comparing the centenarian signature with 2 independent proteomic studies of aging, we replicated the association of 484 proteins of aging and we identified two serum protein signatures that are specific of extreme old age. The data suggest that centenarians acquire similar aging signatures as seen in younger cohorts that have short survival periods, suggesting that they do not escape normal aging markers, but rather acquire them much later than usual. For example, centenarian signatures are significantly enriched for senescence‐associated secretory phenotypes, consistent with those seen with younger aged individuals, and from this finding, we provide a new list of serum proteins that can be used to measure cellular senescence. Protein co‐expression network analysis suggests that a small number of biological drivers may regulate aging and extreme longevity, and that changes in gene regulation may be important to reach extreme old age. This centenarian study thus provides additional signatures that can be used to measure aging and provides specific circulating biomarkers of healthy aging and longevity, suggesting potential mechanisms that could help prolong health and support longevity.  相似文献   

13.
Salivary glycoprotein profiles, obtained after boronic acid enrichment, were studied for the first time in pigs in order to search for specific overall alterations related to acute inflammatory condition. Five healthy pigs and five pigs suffering from rectal prolapse were used, and the levels of acute phase proteins were measured to determine the degree of inflammation of the animals. The enriched glycoprotein profiles, achieved by two-dimensional gel electrophoresis (2DE) were statistically evaluated and spots that appeared differentially regulated between states were subjected to MS analysis for protein identification. Spots from three unique proteins were identified: carbonic anhydrase VI (CA VI), α-1-antichymotrypsin and haptoglobin (Hp). CA VI appeared as two adjacent horizontal spot trains in the glycoprotein profile of healthy animals in its regular isoelectric points (pI). One spot of α-1-antichymotrypsin was found in saliva from pigs with rectal prolapse in an unusual basic pI, and was considered as a breakdown product. Hp was identified as several spot trains in saliva from pigs with rectal prolapse in an unusual alkaline pI and was consequently further investigated. SDS-PAGE and 2DE of paired serum and saliva samples combined with Western blot analysis showed that the unusual Hp position observed in saliva samples was absent in serum. Furthermore, N-glycans from serum and saliva Hp glycopatterns were evaluated from SDS-PAGE Hp bands and showed that the serum N-glycan distribution in Hp β-chain was comparable in quantity and quality in both groups of animals. In saliva, no Hp β-chain derived N-glycans could unambiguously be identified from this sample set, thus needing further detailed investigations in the future.  相似文献   

14.
Fucosylation is an important type of glycosylation involved in cancer, and fucosylated proteins could be employed as cancer biomarkers. Previously, we reported that fucosylated N-glycans on haptoglobin in the sera of patients with pancreatic cancer were increased by lectin-ELISA and mass spectrometry analyses. However, an increase in fucosylated haptoglobin has been reported in various types of cancer. To ascertain if characteristic fucosylation is observed in each cancer type, we undertook site-specific analyses of N-glycans on haptoglobin in the sera of patients with five types of operable gastroenterological cancer (esophageal, gastric, colon, gallbladder, pancreatic), a non-gastroenterological cancer (prostate cancer) and normal controls using ODS column LC-ESI MS. Haptoglobin has four potential glycosylation sites (Asn184, Asn207, Asn211, Asn241). In all cancer samples, monofucosylated N-glycans were significantly increased at all glycosylation sites. Moreover, difucosylated N-glycans were detected at Asn 184, Asn207 and Asn241 only in cancer samples. Remarkable differences in N-glycan structure among cancer types were not observed. We next analyzed N-glycan alditols released from haptoglobin using graphitized carbon column LC-ESI MS to identify the linkage of fucosylation. Lewis-type and core-type fucosylated N-glycans were increased in gastroenterological cancer samples, but only core-type fucosylated N-glycan was relatively increased in prostate cancer samples. In metastatic prostate cancer, Lewis-type fucosylated N-glycan was also increased. These data suggest that the original tissue/cell producing fucosylated haptoglobin is different in each cancer type and linkage of fucosylation might be a clue of primary lesion, thereby enabling a differential diagnosis between gastroenterological cancers and non-gastroenterological cancers.  相似文献   

15.
Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm–BEVS. β-1,4-Galactosyltransferase 1 (β4GalT1) is known as one of type II transmembrane enzymes that transfer galactose in a β-1, 4 linkage to accepter sugars, and a key enzyme for further sialylation of N-glycans. In this study, we developed a large-scale production of recombinant human β4GalT1 (rhβ4GalT1) with N- or C-terminal tags in silkworm–BEVS. We demonstrated that rhβ4GalT1 is N-glycosylated and without mucin-type glycosylation. Interestingly, we found that purified rhβ4GalT1 from silkworm serum presented higher galactosyltransferase activity than that expressed from cultured mammalian cells. We also validated the UDP-galactose transferase activity of produced rhβ4GalT1 proteins by using protein subtracts from silkworm silk gland. Taken together, rhβ4GalT1 from silkworms can become a valuable tool for producing high-quality recombinant glycoproteins with mammalian-like N-glycans.  相似文献   

16.
Despite the great significance of release and analysis of glycans from glycoproteins, the existing N-glycan release methods are undermined by some limitations and deficiencies. The traditional enzymatic protocols feature high N-glycan release specificity but are generally costly and inefficient for some types of N-glycans. The existing chemical methods require harsh reaction conditions or are accompanied by the remarkable formation of by-products. Herein, we describe a versatile chemical method for the release and analysis of N-glycans from glycoproteins. This method differs from the existing methods as only aqueous ammonia is used to catalyze the N-glycan release reactions. Optimization of reaction conditions was performed using RNase B as a model glycoprotein and the obtained results indicated a highest N-glycan yield in ammonia at 60 °C for 16 h. Comparison of this method with traditional enzymatic protocols and recently reported NaClO methods confirmed the good reliability and efficiency of the novel approach. We also successfully applied this method to some complex biological samples, such as Ginkgo seed protein, fetal bovine serum (FBS) and hen egg white, and demonstrated its great compatibility with various neutral N-glycans, core α-1,3-fucosylated N-glycans and sialylated N-glycans. This method is very simple and cost-effective, enabling convenient analysis and large-scale preparation of released reducing N-glycans from various biological samples for structural and functional glycomics studies.  相似文献   

17.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

18.
The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection and transmission.  相似文献   

19.
20.
BackgroundNumerous proteins depend on correct glycosylation for their proper function and nearly all membrane, as well as secreted, proteins are glycosylated. Glycosylation of membrane proteins plays a crucial role in many processes including the intercellular recognition and intermolecular interactions on the cell surface. The composition of N-glycans attached to membrane proteins has not been sufficiently studied due to the lack of efficient and reproducible analytical methods.MethodsThe aim of this study was to optimise cloud-point extraction (CPE) of membrane proteins with the non-ionic detergent Triton X-114 and analyse their N-glycosylation using hydrophilic interaction liquid chromatography (HILIC-UPLC). Purification of isolated proteins from the excess of detergent proved to be the key step. Therefore, several purification procedures were tested to efficiently remove detergent, while retaining maximum protein recoveries.ResultsCPE showed to be an efficient method to simultaneously extract membrane and soluble proteins, which subsequently resulted in different N-glycan profiles of the aforementioned protein groups. The resulting protocol showed satisfactory reproducibility and potential for N-glycan analysis of both membrane and intracellular (soluble) proteins from different kinds of biological material.ConclusionsThis method can be used as a new analytical tool for reliable detection and quantification of oligomannose and complex type N-glycans attached to membrane proteins, thus serving to distinguish between differences in cell types and states.General significanceThe simple method was successfully optimised to generate reliable HILIC-UPLC profiles of N-glycans released from membrane proteins. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号