首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
High levels of redox enzymes have been commonly observed in various types of human cancer, although whether and how the enzymes contribute to cancer malignancy and therapeutic resistance have yet to be understood. Peroxiredoxin IV (Prx4) is an antioxidant with bona fide peroxidase and molecular chaperone functions. Here, we report that Prx4 is highly expressed in prostate cancer patient specimens, as well as established prostate cancer cell lines, and that its levels can be further stimulated through the activation of androgen receptor signaling. We used lentivirus-mediated shRNA knockdown and CRISPR-Cas9 based KO techniques to establish Prx4-depleted prostate cancer cells, which showed delayed cell cycle progression, reduced rate of cell proliferation, migration, and invasion compared to control cells. In addition, we used proteome profiler phosphokinase arrays to identify signaling changes in Prx4-depleted cells; we found that loss of Prx4 results in insufficient phosphorylation of both Akt and its downstream kinase GSK3α/β. Moreover, we demonstrate that Prx4-depleted cells are more sensitive to ionizing radiation as they display compromised ability to scavenge reactive oxygen species and increased accumulation of DNA damage. In mouse xenograft models, we show depletion of Prx4 leads to significant suppression of tumor growth, and tumors formed by Prx4-depleted cells respond more effectively to radiation therapy. Our findings suggest that increased levels of Prx4 contribute to the malignancy and radioresistance of prostate cancer through the activation of Akt/GSK3 signaling pathways. Therefore, strategies targeting Prx4 may be utilized to potentially inhibit tumor growth and overcome radioresistance in prostate cancer.  相似文献   

4.
5.
Prostate cancer starts as androgen-dependent malignancy and responds initially to androgen ablative therapy. Beneficial effects of androgen ablation, however, are often temporary and the cancer reappears as androgen-independent tumor, suggesting the existence of additional factors responsible for progression of the disease. Attention has focused on receptor tyrosine kinases as the growth mediators of androgen-independent prostate cancer; overexpression of epidermal growth factor receptors or their ligand heparin-bound epidermal growth factor, for example, promotes transition to androgen independence. Emerging data demonstrate involvement of another class of cell membrane-anchored receptors, the heterotrimeric guanine-binding (G) protein-coupled receptors (GPCRs) in prostate cancer. In vitro, stimulation of many endogenous GPCRs induces mitogenic signaling and growth of prostate cancer cells. The GPCRs transduce mitogenic signals via activated G proteins in the form of Galpha-GTP and Gbetagamma subunits. Here, we show that expression of a Gbetagamma inhibitor peptide derived from carboxy terminus of G protein-coupled receptor kinase 2 obliterates serum-regulated prostate cancer cell growth in vitro and prevents prostate tumor formation in vivo. We also demonstrate that inhibition of Gbetagamma signaling retards growth of existing prostate tumors by inducing cell death. These data establish a central role for heterotrimeric G proteins in prostate cancer and suggest targeted inhibition of Gbetagamma signaling may serve as specific molecular therapy tool to limit pathologic growth of advanced prostate cancer.  相似文献   

6.
7.
8.
9.
10.
Although several genes have been associated with prostate cancer progression, it is clear that we are far from understanding all the molecular events implicated in the initiation and progression of the disease to a hormone-refractory state. The androgen receptor is a central player in the initiation and proliferation of prostate cancer and its response to hormone therapy. Nuclear factor-kappaB has important proliferative and antiapoptotic activities that could contribute to the development and progression of cancer cells as well as resistance to therapy. In this study, we report that IkappaB kinase epsilon (IKKepsilon), which is controlled by nuclear factor-kappaB in human chondrocytes, is expressed in human prostate cancer cells. We show that IKKepsilon gene expression is stimulated by tumor necrosis factor-alpha treatment in LNCaP cells and is inhibited by transfection of a dominant-negative form of IkappaBalpha, which prevents the nuclear translocation of p65. Furthermore, we found that tumor necrosis factor-alpha-induced IKKepsilon expression is inhibited by an androgen analogue (R1881) in androgen-sensitive prostate cancer cells and that this inhibition correlates with the modulation of IkappaBalpha expression by R1881. We also noted constitutive IKKepsilon expression in androgen-independent PC-3 and DU145 cells. To our knowledge, this is the first report of an IkappaB kinase family member whose expression is modulated by androgen and deregulated in androgen receptor-negative cells.  相似文献   

11.
Recently, we have identified serum response factor (SRF) as a mediator of clinically relevant androgen receptor (AR) action in prostate cancer (PCa). Genes that rely on SRF for androgen responsiveness represent a small fraction of androgen-regulated genes, but distinguish benign from malignant prostate, correlate with aggressive disease, and are associated with biochemical recurrence. Thus, understanding the mechanism(s) by which SRF conveys androgen regulation to its target genes may provide novel opportunities to target clinically relevant androgen signaling. Here, we show that the small GTPase ras homolog family member A (RhoA) mediates androgen-responsiveness of more than half of SRF target genes. Interference with expression of RhoA, activity of the RhoA effector Rho-associated coiled-coil containing protein kinase 1 (ROCK), and actin polymerization necessary for nuclear translocation of the SRF cofactor megakaryocytic acute leukemia (MAL) prevented full androgen regulation of SRF target genes. Androgen treatment induced RhoA activation, increased the nuclear content of MAL, and led to MAL recruitment to the promoter of the SRF target gene FHL2. In clinical specimens RhoA expression was higher in PCa cells than benign prostate cells, and elevated RhoA expression levels were associated with aggressive disease features and decreased disease-free survival after radical prostatectomy. Overexpression of RhoA markedly increased the androgen-responsiveness of select SRF target genes, in a manner that depends on its GTPase activity. The use of isogenic cell lines and a xenograft model that mimics the transition from androgen-stimulated to castration-recurrent PCa indicated that RhoA levels are not altered during disease progression, suggesting that RhoA expression levels in the primary tumor determine disease aggressiveness. Androgen-responsiveness of SRF target genes in castration-recurrent PCa cells continued to rely on AR, RhoA, SRF, and MAL and the presence of intact SRF binding sites. Silencing of RhoA, use of Rho-associated coiled-coil containing protein kinase 1 inhibitors, or an inhibitor of SRF-MAL interaction attenuated (androgen-regulated) cell viability and blunted PCa cell migration. Taken together, these studies demonstrate that the RhoA signaling axis mediates clinically relevant AR action in PCa.  相似文献   

12.
An increase in neuroendocrine (NE) cell number has been associated with progression of prostate tumor, one of the most frequent cancers among Western males. We previously reported that mitochondrial manganese superoxide dismutase (MnSOD) increases during the NE differentiation process. The goal of this study was to find whether MnSOD up-regulation is enough to induce NE differentiation. Several human prostate cancer LNCaP cell clones stably overexpressing MnSOD were characterized and two were selected (MnSOD-S4 and MnSOD-S12). MnSOD overexpression induces NE morphological features as well as coexpression of the NE marker synaptophysin. Both MnSOD clones exhibit lower superoxide levels and higher H(2)O(2) levels. MnSOD-overexpressing cells show higher proliferation rates in complete medium, but in steroid-free medium MnSOD-S12 cells are still capable of proliferation. MnSOD up-regulation decreases androgen receptor and prevents its nuclear translocation. MnSOD also induces up-regulation of Bcl-2 and prevents docetaxel-, etoposide-, or TNF-induced cell death. Finally, MnSOD-overexpressing cells enhance growth of androgen-independent PC-3 cells but reduce growth of androgen-dependent cells. These results indicate that redox modulation caused by MnSOD overexpression explains most NE-like features, including morphological changes, NE marker expression, androgen independence, inhibition of apoptosis, and enhancement of cell growth. Many of these events can be associated with the androgen dependent-independent transition during prostate cancer progression.  相似文献   

13.
5α-Androstane-3α,17β-diol (3α-diol) is reduced from the potent androgen, 5α-dihydrotestosterone (5α-DHT), by reductive 3α-hydroxysteroid dehydrogenases (3α-HSDs) in the prostate. 3α-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5α-DHT. However, 3α-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3α-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3α-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3α-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3α-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3α-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3α-HSD expression are significantly elevated in localized and advanced prostate cancer, 3α-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

14.
Among many factors of causing castration-resistant prostate cancer (CRPC) progression, a growing number of evidences have shown androgen receptors play a critical role. Therefore, blocking androgen receptor remains a therapeutic goal of CRPC. However, resistance to androgen receptor inhibitors, for example, enzalutamide, limits therapeutic efficacy for many patients. In this study, to develop an enzalutamide-resistant cell model for molecular mechanism investigation of enzalutamide-resistance, we continuously treated C4-2B cells with multiplied concentrations of enzalutamide. The IC50 of resistant cells was identified as 14.7705 µM, and the resistance index was calculated as 12.4. In addition, we verified the resistance of resistant cells through experiments in vivo and found the genes in androgen receptor signaling pathway (androgen receptor, Jagged1, Notch1) and those in androgen receptor alternative signaling pathways behaved the opposite. For some of the former, their mRNA and protein expression reduced markedly while for the latter, for example, CXCR7, AKT, STAT3, FOXP3, they rose dramatically in the expression level of protein and mRNA. More importantly, the tumor volume, tumor wet weight, PSA and VEGF secretion level, positive staining rate of Ki67 nuclei in resistant strain heterogeneous tumor treated with enzalutamide were significantly higher than those of maternal cell heterogeneous tumor treated with enzalutamide, whereas no obvious difference was detected between resistant strain heterogeneous tumor treated with enzalutamide and those of the resistant strain treated with reference drug. Finally, we identified 654 differentially expression genes and 2 compounds (atracurium besilate, methotrexates) associated with the amelioration of enzalutamide-resistance. Overall, we successfully established an enzalutamide-resistance cell model and screened out some resistance genes and candidate small molecule drugs.  相似文献   

15.
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

16.
前列腺癌的发生、进展依赖于雄激素,因此去势手术成为治疗晚期前列腺癌的标准疗法。但是去势后大多前列腺癌最终将转化为雄激素非依赖性前列腺癌,甚至进展为激素难治性前列腺癌,使得肿瘤的进展不受低水平雄激素的影响。即使如此,大多数激素非依赖性前列腺癌,依然阳性表达雄激素受体。因而雄激素受体在前列腺癌发生发展中起着重要作用。而PI3K/Akt信号通路能够通过维持细胞生存、抑制细胞凋亡、促进细胞代谢及血管生成等促进前列腺癌进展。本综述旨在总结前人研究,阐述雄激素受体和PI3K/Akt信号通路之间相互作用关系。研究表明Akt信号通路能够正性或者负性调控AR蛋白表达、蛋白的稳定性及其转录活性,从而维持细胞的生存、代谢。而AR即可以通过基因转录途径抑制Akt活化又能通过非转录基因途径激活Akt及其下游蛋白。因此,AR和Akt信号通路相互协同促进前列腺癌的发生及其向雄激素非依赖性前列腺癌进展。  相似文献   

17.
The insulin-like growth factor-I (IGF-IR) and androgen (AR) receptors are important players in prostate cancer. Functional interactions between the IGF-I and androgen signaling pathways have crucial roles in the progression of prostate cancer from early to advanced stages. DNA methylation is a major epigenetic alteration affecting gene expression. Hypermethylation of tumor suppressor promoters is a frequent event in human cancer, leading to inactivation and repression of specific genes. The aim of the present study was to identify the entire set of methylated genes ("methylome") in a cellular model that replicates prostate cancer progression. The methylation profiles of the P69 (early stage, benign) and M12 (advanced stage, metastatic) prostate cancer cell lines were established by treating cells with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza) followed by DNA microarray analysis. Comparative genome-wide methylation analyses of 5-Aza-treated versus untreated cells identified 297 genes overexpressed in P69 and 191 genes overexpressed in M12 cells. 102 genes were upregulated in both benign and metastatic cell lines. In addition, our analyses identified the PITX2 gene as a master regulator upstream of the AR and IGF-IR genes. The PITX2 promoter was semi-methylated in P69 cells but fully methylated (i. e., silenced) in M12 cells. Epigenetic regulation of PITX2 during the course of the disease may lead to orchestrated control of the AR and IGF signaling pathways. In summary, our results provide new insights into the epigenetic changes associated with progression of prostate cancer from an organ confined, androgen-sensitive disorder to an aggressive, androgen-insensitive disease.  相似文献   

18.
19.
20.
Prostate cancer progresses from a hormone-sensitive, androgen-dependent stage to a hormone-refractory, androgen-independent tumor. The androgen receptor pathway functions in these androgen-independent tumors despite anti-androgen therapy. In our LAPC-4 prostate cancer model, androgen-independent sublines expressed higher levels of the HER-2/neu receptor tyrosine kinase than their androgen-dependent counterparts. Forced overexpression of HER-2/neu in androgen-dependent prostate cancer cells allowed ligand-independent growth. HER-2/neu activated the androgen receptor pathway in the absence of ligand and synergized with low levels of androgen to 'superactivate' the pathway. By modulating the response to low doses of androgen, a tyrosine kinase receptor can restore androgen receptor function to prostate cancer cells, a finding directly related to the clinical progression of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号