共查询到20条相似文献,搜索用时 15 毫秒
1.
Yun-Jung Oh Jongju Na Ji-Heon Jeong Dae-Kyoon Park Kyung-Ho Park Jeong-Sik Ko Duk-Soo Kim 《BMB reports》2012,45(11):635-640
To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response. [BMB Reports 2012; 45(11): 635-640] 相似文献
2.
The present study showed a wide presence of CCL28 in mouse CNS, including cerebral, cerebellum, brain stem and spinal cord. In hippocampus, the expression of CCL28 at both mRNA and protein level was clarified. The CCL28 expression was mainly localized in pyramidal cells of CA area, granular cells of dentate gyrus and some interneurons in CA area and hilus. Double-labelling immunocytochemistry revealed that most of calbindin, calretinin and parvalbumin immunopositive neurons expressed CCL28. During and after pilocarpine induced status epilepticus (SE), a down-regulated expression of CCL28 in hippocampal interneurons in the CA1 area and in the hilus of the dentate gyrus was demonstrated. The present study may, therefore provide evidence that CCL28 may have a novel role in CNS and may be involved in the loss of hippocampal interneurons, and subsequent disinhibition of pyramidal neurons. 相似文献
3.
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury. 相似文献
4.
Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus 总被引:4,自引:0,他引:4
Niimura M Moussa R Bissoon N Ikeda-Douglas C Milgram NW Gurd JW 《Journal of neurochemistry》2005,92(6):1377-1385
Systemic administration of pilocarpine preceded by lithium induces status epilepticus (SE) that results in neurodegeneration and may lead to the development of spontaneous recurrent seizures. We investigated the effect of Li/pilocarpine-induced SE on phosphorylation of the NMDA receptor in rat hippocampus. Phosphorylation of NR1 by PKC on Ser890 was decreased to 45% of control values immediately following 1 h of SE. During the first 3 h following the termination of SE, phosphorylation of Ser890 increased 4-fold before declining to control values by 24 h. Phosphorylation of NR1 by PKA was also depressed relative to controls immediately following SE and transiently increased above control values upon the termination of SE. SE was accompanied by a general increase in tyrosine phosphorylation of hippocampal proteins that lasted for several hours following the termination of seizures. Tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDAR increased 3-4-fold over control values during SE, continued to increase during the first hour following SE and then declined to control levels by 24 h. SE resulted in the activation of Src and Pyk2 associated with the postsynaptic apparatus, suggesting a role for these enzymes in the SE-induced increase in tyrosine phosphorylation. Changes in phosphorylation of the NMDA receptor may play a role in the pathophysiological consequences of SE. 相似文献
5.
Previous studies have shown that the death-associated protein (Daxx) shuttles between nucleus and cytoplasm under ischemic stress, and the subcellular localization of Daxx plays an important role in ischemic neuron death. In this study, by blocking the Daxx trafficking, the rat hippocampus CA1 neurons were protected against cerebral ischemia/reperfusion, and the molecular mechanism underlying this neuroprotection was studied. We found that pretreatment of SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), or an anti-oxidant, N-acetylcysteine (NAC), could not only prevent Daxx from trafficking but also increase the number of the surviving CA1 pyramidal cells of hippocampus at 5days of reperfusion. Furthermore, knock-down of endogenous Daxx exerted similar neuroprotective effect during ischemia/reperfusion. We found the treatment of SP600125 or NAC could decrease the activation of Ask1 during ischemia/reperfusion and suppress the assembly of the Fas·Daxx·Ask1 signaling module, and in succession inhibit JNK activation and c-Jun phosphorylation. This study provides the Daxx trafficking as a new potential therapeutic target for ischemic brain injury. 相似文献
6.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter. 相似文献
7.
Jing Gan Lingyi Huang Yi Qu Rong Luo Qianyun Cai Fengyan Zhao Dezhi Mu 《Journal of cellular and molecular medicine》2020,24(1):149-159
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of gene expression at various levels. However, to date, the expression profile of lncRNAs in status epilepticus (SE) was unclear. In our study, the expression profile of lncRNAs was investigated by high‐throughput sequencing based on a lithium/pilocarpine‐induced SE model in immature rats. Furthermore, weighted correlation network analysis (WGCNA), gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to construct co‐expression networks and establish functions of the identified hub lncRNAs in SE. The functional role of a hub lncRNA (NONRATT010788.2) in SE was investigated in an in vitro model. Our results indicated that 7082 lncRNAs (3522 up‐regulated and 3560 down‐regulated), which are involved in cell proliferation, inflammatory responses, angiogenesis and autophagy, were dysregulated in the hippocampus of immature rats with SE. Additionally, WGCNA identified 667 up‐regulated hub lncRNAs in turquoise module that were involved in apoptosis, inflammatory responses and angiogenesis via regulation of HIF‐1, p53 and chemokine signalling pathways and via inflammatory mediator regulation of TRP channels. Knockdown of an identified hub lncRNA (NONRATT010788.2) inhibited neuronal apoptosis in vitro. Taken together, our study is the first to demonstrate the expression profile and potential function of lncRNAs in the hippocampus of immature rats with SE. The defined hub lncRNAs may participate in the pathogenesis of SE via lncRNA‐miRNA‐mRNA network. 相似文献
8.
A C LeBlanc J Ramcharitar V Afonso E Hamel D A Bennett P Pakavathkumar S Albrecht 《Cell death and differentiation》2014,21(5):696-706
Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease. 相似文献
9.
Richard S. Jope Joanne M. Miller Thomas N. Ferraro Theodore A. Hare 《Neurochemical research》1989,14(9):829-834
We measured the effects of four weeks of dietary lithium treatment and of status epilepticus induced by administration of pilocarpine to lithium-treated rats on the concentrations of amino acids in four regions of rat brain: cerebral cortex, hippocampus, striatum, and substantia nigra. To ensure accurate quantitation of the amino acids, animals were sacrificed by focussed beam microwave irradiation and amino acids were measured using a fully validated triple-column ion-exchanged amino acid analyzer with post-column o-phthalaldehyde derivatization and fluorometric detection. The concentrations of four amino acids, threonine, methionine, lysine and tyrosine, were increased significantly in two to four brain regions by chronic lithium treatment. Their concentrations remained elevated, or were further increased, during status epilepticus. The concentrations of eight amino acids and ammonia were not altered by lithium treatment but increased in concentration during status epilepticus in some brain regions. Glycine, serine, arginine and citrulline were decreased by chronic lithium treatment. Status epilepticus increased the concentrations of these four amino acids above that found in the lithium-treated samples in some of the brain regions that were examined. Six amino acids and glutathione were generally unaltered by both treatments. These results are related to the effects of lithium treatment and are compared with changes reported by others following treatment with a variety of convulsive stimuli. 相似文献
10.
11.
Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus 总被引:3,自引:0,他引:3
The time course and critical determinants of mitochondrial dysfunction and oxidative stress following limbic status epilepticus (SE) were investigated in hippocampal sub-regions of an electrical stimulation model in rats, at time points 4-44h after status. Mitochondrial and cytosolic enzyme activities were measured spectrophotometrically, and reduced glutathione (GSH) concentrations by HPLC, and compared to results from sham controls. The earliest change in any sub-region was a fall in GSH, appearing as early as 4h in CA3 (-13%, p<0.05), and persisting at all time points. This was followed by a transient fall in complex I activity (CA3, 16h, -13%, p<0.05), and later changes in aconitase (CA1,-18% and CA3, -22% at 44h, p<0.05). The activity of the cytosolic enzyme glyceraldehyde-3-phosphate-dehydrogenase was unaffected at all time points. It is known that GSH levels are dependent both on redox status, and on the availability of the precursor cysteine, in turn dependent on the cysteine/glutamate antiporter, for which extracellular glutamate concentrations are rate limiting. Both mechanisms are likely to contribute indirectly to GSH depletion following seizures. That a relative deficiency in GSH precedes later changes in the activities of complex I and aconitase in vulnerable hippocampal sub-regions, occurring within a clinically relevant therapeutic time window, suggests that strategies to boost GSH levels and/or otherwise reduce oxidative stress following seizures, deserve further study, both in terms of preventing the biochemical consequences of SE and the neuronal dysfunction and clinical consequences. 相似文献
12.
T Fujii Y Kuraishi T Okada M Satoh 《Canadian journal of physiology and pharmacology》1990,68(3):413-418
We made use of the [3H]phorbol 12,13-dibutyrate binding assay to investigate the effects of bifemelane on the subcellular distribution of protein kinase C in the CA3 and CA1 regions of guinea-pig hippocampal slices. Bifemelane, a drug that augments the long-term potentiation in the CA3 region, significantly induced the translocation of [3H]phorbol 12,13-dibutyrate binding activity from the cytosol to the membrane in a dose-dependent manner (10(-8) to 10(-6) M) and with no effects on total binding activity in the CA3 region. Bifemelane, at a concentration of 10(-6) M, was without effect on the subcellular distribution of [3H]phorbol 12,13-dibutyrate binding activity in the CA1 region. These observations suggest that bifemelane acts directly on the hippocampus to induce translocation of protein kinase C in the CA3 region. Such an effect may be associated with the bifemelane-induced augmentation of the long-term potentiation in this region of the brain. 相似文献
13.
Araújo IM Gil JM Carreira BP Mohapel P Petersen A Pinheiro PS Soulet D Bahr BA Brundin P Carvalho CM 《Journal of neurochemistry》2008,105(3):666-676
Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (10 mg/kg) intraperitoneally and killed 24 h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labeling in the CA1 and CA3 areas of the hippocampus in the rats that received kainic acid, when compared with saline-treated rats. Immunohistochemistry and western blot analysis for the calpain-derived breakdown products of spectrin showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus . 相似文献
14.
The present study showed CCR7, CCR8, CCR9 and CCR10 in the normal Swiss mouse hippocampus at both protein and mRNA levels. CCR7, CCR9 and CCR10 were mainly localized in hippocampal principal cells and some interneurons. CCR9 was also found in the mossy fibres and/or terminals, suggesting an axonal or presynaptic localization, and CCR10 in apical dendrites of pyramidal neurons in the CA1 area. CCR8 was observed in interneurons. Double-labelling immunocytochemistry revealed that most of calbindin (CB)-, calretinin (CR)- and parvalbumin (PV)-immunopositive neurons expressed CCR7-10, except CR-immunopositive cells in which only 10 to 12% expressed CCR8. During and after pilocarpine-induced status epilepticus, progressive changes of each of CCR7, CCR8, CCR9 and CCR10 proteins occurred in different patterns at various time points. Sensitive real-time PCR showed similar change patterns at mRNA level. At the chronic stage, i.e. at 2 months after pilocarpine-induced status epilepticus, significant reduction of CCR7-10 expression in CB-, CR- and PV-immunpositive interneurons may suggest the phenotype change of surviving interneurons. Double labelling of CCR7, CCR8 and CCR9 with glial fibrillary acidic protein (GFAP) at the chronic stage may suggest an induced expression in reactive astrocytes. The present study may, therefore, for the first time, provide evidence that CCR7-10 may be involved in normal hippocampal activity. The demonstration of the progressive changes of CCR7-10 during and after status epilepticus may open a new area to reveal the mechanism of neuronal loss after status epilepticus and of epileptogenesis. 相似文献
15.
Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice 下载免费PDF全文
Akifumi Yoshikawa Tomoya Kamide Koji Hashida Hieu Minh Ta Yuki Inahata Mika Takarada‐Iemata Tsuyoshi Hattori Kazutoshi Mori Ryosuke Takahashi Tomohiro Matsuyama Yutaka Hayashi Yasuko Kitao Osamu Hori 《Journal of neurochemistry》2015,132(3):342-353
16.
Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na+-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson’s disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1−/− mice and to wild-type controls. Although EAAC1−/− mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24 h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1−/− mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed. 相似文献
17.
C-terminal region of Bfl-1 induces cell death that accompanies caspase activation when fused with GFP 总被引:3,自引:0,他引:3
Previously, we reported that anti-apoptotic Bfl-1 is converted to a pro-apoptotic protein following fusion at its N-terminus with green fluorescent protein (GFP) (GFP-Bfl-1). In this study, we performed a Bfl-1 deletion study in order to elucidate the underlying mechanism of GFP-Bfl-1-induced cell death. We found that the Bcl-2 homology (BH) domains in Bfl-1 are dispensable with respect to cell death and that GFP fusion with the 29 amino acids of the C-terminal region of Bfl-1 (GFP-BC) is sufficient to induce cell death. Moreover, when BC was fused with other tagging partners like GST or MBP, little cell death was observed, implying that the GFP region is as important as the BC region for GFP-BC-induced cell death. Further deletion analysis defined a region of GFP as a determinant of GFP-BC-induced cell death. Confocal microscopic analysis showed that GFP-chimeras containing the BC region of Bfl-1 are located mainly in mitochondria. The GFP-BC-induced cell death accompanied cellular caspase activation, and treatment with the pan-caspase inhibitor, Boc-D-FMK, partially inhibited GFP-BC-induced cell death. However, the over-expression of anti-apoptotic molecules, such as Bcl-x(L) and CrmA, did not block GFP-BC-induced cell death. In summary, GFP-BC induces cell death with caspase activation through mitochondria dependent process. 相似文献
18.
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes. 相似文献
19.
Post-synaptic actions of glycine are terminated by specialized transporters. There are two genes encoding glycine transporters, GlyT1 and GlyT2. Glycine acts as a co-agonist at N -methyl- d -aspartate glutamatergic receptors (NMDARs). Blockage of GlyT1 enhances NMDAR function by controlling ambient glycine concentrations. Using whole-cell patch-clamp recordings of acute hippocampal slices, we investigated NMDAR kinetics of CA1 pyramidal neurons of mice expressing 50% of GlyT1 (GlyT1+/−). In this study, we report that the glycine modulatory site of the NMDAR at CA1 synapses is saturated in GlyT1+/− but not in wild-type (WT) mice. We also found that the effect of ifenprodil, a highly selective NR2B-containing-NMDAR antagonist, is significantly reduced at CA1 synapses in GlyT1+/− compared to WT mice while immunoblotting experiments do not show significant differences for NR1, NR2A-B-C-D subunits in both types of mice, suggesting alteration in NR2B-containing-NMDAR localization under a state of chronic saturating level of endogenous glycine. Using a pharmacological approach with MK-801 and DL-TBOA, we discriminated synaptic vis-à-vis extra-synaptic NMDARs. We found that NR2B-containing-NMDARs are expressed at a higher level in the extra-synaptic area of CA1 pyramidal neurons from GlyT1+/− compared to WT mice. Our results demonstrate that chronic saturating level of glycine induces significant changes in NMDAR localization and kinetic. Therefore, results from our study should help to gain a better understanding of the role of glycine in pathological conditions. 相似文献
20.
《Life sciences》1994,54(24):PL457-PL462
Normal male rats in which status epilepticus has been induced by injecting 30 mg/kg of pilocarpine after a single systemic administration of lithium (sufficient to produce blood levels of 0.2 mEq/L) invariably die within 24 hr. Real-time monitoring indicated sudden cardiac death; it was preceded by progressive intensification of arrhythmia. A single systemic injection (25 mg/kg) of the atypical phenothiazine acepromazine prevented the mortality and virtually eliminated the cardiac instability. 相似文献