首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3′ single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.

  相似文献   

2.
Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.  相似文献   

3.
Recently, it has been shown that a predicted P-loop ATPase (the HerA or MlaA protein), which is highly conserved in archaea and also present in many bacteria but absent in eukaryotes, has a bidirectional helicase activity and forms hexameric rings similar to those described for the TrwB ATPase. In this study, the FtsK–HerA superfamily of P-loop ATPases, in which the HerA clade comprises one of the major branches, is analyzed in detail. We show that, in addition to the FtsK and HerA clades, this superfamily includes several families of characterized or predicted ATPases which are predominantly involved in extrusion of DNA and peptides through membrane pores. The DNA-packaging ATPases of various bacteriophages and eukaryotic double-stranded DNA viruses also belong to the FtsK–HerA superfamily. The FtsK protein is the essential bacterial ATPase that is responsible for the correct segregation of daughter chromosomes during cell division. The structural and evolutionary relationship between HerA and FtsK and the nearly perfect complementarity of their phyletic distributions suggest that HerA similarly mediates DNA pumping into the progeny cells during archaeal cell division. It appears likely that the HerA and FtsK families diverged concomitantly with the archaeal–bacterial division and that the last universal common ancestor of modern life forms had an ancestral DNA-pumping ATPase that gave rise to these families. Furthermore, the relationship of these cellular proteins with the packaging ATPases of diverse DNA viruses suggests that a common DNA pumping mechanism might be operational in both cellular and viral genome segregation. The herA gene forms a highly conserved operon with the gene for the NurA nuclease and, in many archaea, also with the orthologs of eukaryotic double-strand break repair proteins MRE11 and Rad50. HerA is predicted to function in a complex with these proteins in DNA pumping and repair of double-stranded breaks introduced during this process and, possibly, also during DNA replication. Extensive comparative analysis of the ‘genomic context’ combined with in-depth sequence analysis led to the prediction of numerous previously unnoticed nucleases of the NurA superfamily, including a specific version that is likely to be the endonuclease component of a novel restriction-modification system. This analysis also led to the identification of previously uncharacterized nucleases, such as a novel predicted nuclease of the Sir2-type Rossmann fold, and phosphatases of the HAD superfamily that are likely to function as partners of the FtsK–HerA superfamily ATPases.  相似文献   

4.
Hopkins BB  Paull TT 《Cell》2008,135(2):250-260
The Mre11/Rad50 complex has been implicated in the early steps of DNA double-strand break (DSB) repair through homologous recombination in several organisms. However, the enzymatic properties of this complex are incompatible with the generation of 3' single-stranded DNA for recombinase loading and strand exchange. In thermophilic archaea, the Mre11 and Rad50 genes cluster in an operon with genes encoding a helicase, HerA, and a 5' to 3' exonuclease, NurA, suggesting a common function. Here we show that purified Mre11 and Rad50 from Pyrococcus furiosus act cooperatively with HerA and NurA to resect the 5' strand at a DNA end under physiological conditions in vitro. The 3' single-stranded DNA generated by these enzymes can be utilized by the archaeal RecA homolog RadA to catalyze strand exchange. This work elucidates how the conserved Mre11/Rad50 complex promotes DNA end resection in archaea and may serve as a model for DSB processing in eukaryotes.  相似文献   

5.
《FEBS letters》2014,588(24):4637-4644
DNA double-strand breaks can be repaired by homologous recombination, during which the DNA ends are long-range resected by helicase–nuclease systems to generate 3′ single strand tails. In archaea, this requires the Mre11–Rad50 complex and the ATP-dependent helicase–nuclease complex HerA–NurA. We report the cryo-EM structure of Sulfolobus solfataricus HerA–NurA at 7.4 Å resolution and present the pseudo-atomic model of the complex. HerA forms an ASCE hexamer that tightly interacts with a NurA dimer, with each NurA protomer binding three adjacent HerA HAS domains. Entry to NurA’s nuclease active sites requires dsDNA to pass through a 23 Å wide channel in the HerA hexamer. The structure suggests that HerA is a dsDNA translocase that feeds DNA into the NurA nuclease sites.  相似文献   

6.
A closed circular, double-stranded infectious DNA of Moloney leukemia virus has been described previously. The present report characterizes a second type of infectious, unintegrated viral DNA which is linear, largely double stranded, and of mass comparable to that of the closed circular viral DNA. The linear form is of nonpermuted sequence, and SalI endonuclease cleaves at one site 45% from one end.  相似文献   

7.
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn2+, giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.  相似文献   

8.
Chae J  Kim YC  Cho Y 《Nucleic acids research》2012,40(5):2258-2270
Generation of the 3′ overhang is a critical event during homologous recombination (HR) repair of DNA double strand breaks. A 5′–3′ nuclease, NurA, plays an important role in generating 3′ single-stranded DNA during archaeal HR, together with Mre11–Rad50 and HerA. We have determined the crystal structures of apo- and dAMP-Mn2+-bound NurA from Pyrococcus furiousus (Pf NurA) to provide the basis for its cleavage mechanism. Pf NurA forms a pyramid-shaped dimer containing a large central channel on one side, which becomes narrower towards the peak of the pyramid. The structure contains a PIWI domain with high similarity to argonaute, endoV nuclease and RNase H. The two active sites, each of which contains Mn2+ ion(s) and dAMP, are at the corners of the elliptical channel near the flat face of the dimer. The 3′ OH group of the ribose ring is directed toward the channel entrance, explaining the 5′–3′ nuclease activity of Pf NurA. We provide a DNA binding and cleavage model for Pf NurA.  相似文献   

9.
Proteins diffusing from tobacco pollen grains exhibit different phosphohydrolytic activities. Molecular sieving produces nuclease fractionation into forms I, II and III with apparent molecular masses ≥ 60 × 103, 32.9 × 103 and 24.6 × 103, respectively, and separation of principal forms II and III from phosphatase and major part of 5′- and 3′-nucleotidase activities. These forms did not differ in the mode of substrate attack and were combined for further enzyme characterization. The preparation had 3′-nueleotidase activity even after further purification by DEAE-cellulose chromatography. The enzyme is an endonuclease with preference for single stranded molecules. The endolytical cleavage of native DNA occurs simultaneously in both strands and generates limit products of about 58 pairs of nucleotides. DNA duplex polymers are also cleaved by a terminally-directed, exonuclease-like process. The products of DNA degradation are oligonucleotides and 5′-mononucleotides. In the presence of NaCl, both endolytical and exonucleaselike activities on bihelical DNA are inhibited and the proportion of mono-to oligonucleotides produced increases. The enzyme can rapidly convert superhelical plasmid DNA to a nicked open circular form, and then to a unit-length linear molecule. On the basis of these properties and of those found earlier (sugar-unspecificity, acidic pH optimum, activation by Zn2+ ions), the extracellular nuclease of tobacco pollen can be classified as plant nuclease I (EC 3.1.30.x).  相似文献   

10.
Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ.  相似文献   

11.
We isolated and characterized a new nuclease (NurA) exhibiting both single-stranded endonuclease activity and 5′–3′ exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Nuclease homologs are detected in all thermophilic archaea and, in most species, the nurA gene is organized in an operon-like structure with rad50 and mre11 archaeal homologs. This nuclease might thus act in concert with Rad50 and Mre11 proteins in archaeal recombination/repair. To our knowledge, this is the first report of a 5′–3′ nuclease potentially associated with Rad50 and Mre11-like proteins that may lead to the processing of double-stranded breaks in 3′ single-stranded tails.  相似文献   

12.
Bacillus subtilis Marburg TI (thy,trpC2) has at least four endonuclease activities as assayed by measuring the conversion of single-stranded circular f1 DNA to the linear form by agarose gel electrophoresis. One of them, which is specific for single-stranded DNA (named endonuclease MII), was purified about 320 times by two chromatographic steps and gel filtration, thereby eliminating exonuclease and phosphomonoesterase activities. This activity requires divalent cations but does not require ATP. The molecular weight estimated by gel filtration was about 57,000 daltons. The cleavage products have 5'-phosphoryl termini. At low concentrations, double-stranded DNA is not split to any detectable extent. At high concentrations, however, double-stranded superhelical DNA is attacked to yield open-circular and linear DNA's. The activity of the enzyme towards single-stranded circular DNA relative to that towards double-stranded linear DNA was calculated to be approximately 5,000:1 by comparing the initial rates of introducing single-strand breaks into the DNA's.  相似文献   

13.
Hepatitis B Viral DNA Molecules Have Cohesive Ends   总被引:5,自引:2,他引:5  
  相似文献   

14.
The circular DNA of hepatitis B Dane particles, which serves as the primer/template for an endogenous DNA polymerase, was analyzed by electrophoresis before and after a polymerase reaction and after digestion by restriction endonuclease or single-strand-specific endonuclease S1. The unreacted molecules extracted from the particles were electrophoretically heterogeneous, and treatment with S1 nuclease produced double-stranded linear DNA ranging in length from 1,700 to 2,800 base pairs (bp). After an endogenous DNA polymerase reaction, two discrete species of DNA molecules were found: a circular form and a linear form 3,200 bp long. The reaction resulted in a population of molecules with an elongated and more homogeneous double-stranded region. These results suggest that the circular molecules in Dane particles have single-stranded regions of varying lengths that are made double stranded during the DNA polymerase reaction. The endogenous DNA polymerase was found to initiate apparently at random in a region spanning more than a third of the molecule. Analysis of restriction endonuclease cleavage fragments of the fully elongated DNA revealed that although the molecules were of a uniform length, they were somewhat heterogeneous in sequence. The sum of the sizes of the 10 major endonuclease Hae III-generated fragments, detected by ethidium bromide, was 3,880 bp. Two additional fragments (B and G) detected by autoradiography after an endogenous DNA polymerase reaction with (32)P-labeled deoxynucleoside triphosphates made the total 4,910 bp.  相似文献   

15.
16.
An endonuclease activity shown to be associated with Friend leukemia virus has been characterized using double-stranded phi X174 DNA as substrate. In the presence of Mg2+, the endonuclease activity was able to convert supercoiled circular DNA duplexes to the relaxed form by introducing single-stranded nicks into the DNA. Most of the nicked DNA duplexes contained only one nick per strand, since unit length DNA was the predominant species obtained when the nicked DNA was analyzed by alkaline sucrose gradient centrifugation. The regions into which the nick could be introduced were evenly distributed around the circular DNA molecule. When Mn2+ was substituted for Mg2+ in the reaction mixture, the number of nicks introduced into circular DNA duplexes by the virus associated endonuclease was greatly increased. In contrast to circular duplexes, linear duplexes and single-stranded DNA functioned poorly as substrates for the virus-associated enzyme. The Friend leukemia virus-associated endonuclease activity is with respect to these characteristics very similar to the endonuclease activity associated with the p32 protein of the avian myeloblastosis virus [1]. The molecular weight of the Friend leukemia virus endonuclease was estimated by gel filtration on a Sephacryl S-200 column to be about 45 000.  相似文献   

17.
In our studies on the role of enzymes in plant DNA replication, recombination, and repair, we isolated from cauliflower (Brassica oleracea L. var. botrytis) inflorescences a single-stranded DNA-specific endonuclease that was inhibited by ATP. The endonuclease, designated cauliflower nuclease II, was purified to near homogeneity through six successive column chromatographies. The enzyme is a single polypeptide with a molecular mass of 70 kDa as judged by the results of sodium dodecyl sulfate-polyacry amide gel electrophoresis, activity gel, and gel-filtration column chromatography. The enzyme can cleave a linear or a circular single-stranded DNA but cannot cut or nick a double-stranded DNA. The mode of activity of the nuclease is endonucleolytic and non-processive. Interestingly, the endonuclease activity is strongly inhibited by less than 0.1 mM ATP, although the role of this inhibition is thus far unclear. While ATPγS and GTP can also inhibit the activity, other ribonucleoside triphosphates are much less effective. The optimum pH of the enzyme is 5.6. The enzyme requires an exceptionally high ionic strength, 0.2 M KCI for optimum activity, and without these ions no activity can be detected. The endonuclease activity is stimulated by Ca2+, which cannot be replaced by Mg2+ or Mn2+. The features of the enzyme and its relation to plant DNA metabolism are discussed. Received: 26 March 1998 / Accepted: 4 June 1998  相似文献   

18.
Haldar D  Acharya S  Rao MR 《Biochemistry》2002,41(39):11628-11641
Nucleases are involved in the processing of various intermediates generated during crucial DNA metabolic processes such as replication, repair, and recombination and also during maturation of RNA precursors. An endonuclease, degrading specifically single-stranded circular DNA, was identified earlier in rat testis nuclear extract while purifying a strand-transfer activity. We are now reporting the purification of this endonuclease, which is a monomeric 42 kDa protein, from rat testis to near-homogeneity. In addition to degrading single-stranded circular DNA, it nicks supercoiled plasmid DNA to generate relaxed DNA and does not act on linear single-stranded or double-stranded DNA. It also makes specific incisions at the single-strand/duplex junction of pseudo-Y, 3'- and 5'-overhangs and 3'- and 5'-flap structures. Other structures such as mismatch, insertion loop, and Holliday junction are not substrates for the testis endonuclease. In contrast to FEN1, the testis endonuclease makes asymmetric incisions on both strands of the branched structures, and free single-stranded ends are not necessary for the structure-specific incisions. Neither 5'-3' nor 3'-5' exonuclease activity is associated with the testis endonuclease. The amino acid sequences of tryptic peptides of the 42 kDa endonuclease show near-identity to polypyrimidine-tract binding protein (PTB) that is involved in the regulation of splicing of eukaryotic mRNA. The significance of the results on the association of structure-specific endonucleae activities with PTB-related protein is discussed.  相似文献   

19.
A second form of single-strand specific endonuclease, which is stable to heating up to 74 degrees C and does not bind strongly to phosphocellulose, has been partially purified from extracts of mycelia of wild-type Neurospora crassa. The endonuclease is associated with an equally heat-stable exonuclease which degrades linear but not circular double-stranded DNA and does not attack double-stranded RNA. The exonuclease probably also degrades single-stranded DNA. Both endonuclease and exonuclease activities are inhibited by 0.1-0.5 mM ATP. The exonuclease is preferentially inhibited by a variety of agents and preferentially inactivated by trypsin. A DNA-unwinding activity has also been detected in the nuclease preparation. Protease(s) present in the nuclease preparation destroy the DNA-unwinding and exonuclease activities on incubation at 37 degrees C, but do not affect the endonuclease activity. However, the heat-stability and chromatographic properties of the endonuclease are affected by this treatment. The altered properties of the endonuclease are very similar to those of the single-strand specific endonuclease which has been previously described. The combined nuclease activities of the unaltered preparational make up a putative recombination nuclease of N. crassa.  相似文献   

20.
We showed previously that rad50 and mre11 genes of thermophilic archaea are organized in an operon-like structure with a third gene (nurA) encoding a 5' to 3' exonuclease. Here, we show that the rad50, mre11 and nurA genes from the hyperthermophilic archaeon Sulfolobus acidocaldarius are co-transcribed with a fourth gene encoding a DNA helicase. This enzyme (HerA) is the prototype of a new class of DNA helicases able to utilize either 3' or 5' single-stranded DNA extensions for loading and subsequent DNA duplex unwinding. To our knowledge, DNA helicases capable of translocating along the DNA in both directions have not been identified previously. Sequence analysis of HerA shows that it is a member of the TrwB, FtsK and VirB4/VirD4 families of the PilT class NTPases. HerA homologs are found in all thermophilic archaeal species and, in all cases except one, the rad50, mre11, nurA and herA genes are grouped together. These results suggest that the archaeal Rad50-Mre11 complex might act in association with a 5' to 3' exonuclease (NurA) and a bipolar DNA helicase (HerA) indicating a probable involvement in the initiation step of homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号