首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于社会网络分析法的生态工业园典型案例研究   总被引:1,自引:0,他引:1  
杨丽花  佟连军 《生态学报》2012,32(13):4236-4245
以丹麦卡伦堡和广西贵港生态工业园为例,应用社会网络分析法分析典型生态工业园的组织结构和网络结构。用簇系数、平均最短距离、传递性以及核心-边缘结构来衡量其稳定性,分析其不同结构特征。卡伦堡生态工业园的簇系数为0.715,远高于贵港生态工业园的0.246,说明其聚合性较好;从最短距离长度来看,卡伦堡和贵港分别为2.110和2.236,复杂性弱;从传递性来看,两者传递性皆低于25%,节点之间联系性不够强;从核心-边缘结构来看,卡伦堡各节点之间的异质性(0.057)高于贵港(0.005),可见贵港参与主体的中心性较为均衡,而卡伦堡差异性较大。两者都以一个产业或者企业集团为网络核心;网络内其他节点联系不够紧密,长链条联结较少;网络复杂性弱。  相似文献   

2.
The formalization of multilayer networks allows for new ways to measure sociality in complex social systems,including groups of animals.The same mathematical representation and methods are widely applicable across fields and study systems,and a network can represent drastically different types of data.As such,in order to apply analyses and interpret the results in a meaningful way the researcher must have a deep understanding of what their network is representing and what parts of it are being measured by a given analysis.Multilayer social networks can represent social structure with more detail than is often present in single layer networks,including multiple"types"of individuals,interactions,or relationships,and the extent to which these types are interdependent.Multilayer networks can also encompass a wider range of social scales,which can help overcome complications that are inherent to measuring sociality.In this paper,I dissect multilayer networks into the parts that correspond to different components of social structures.I then discuss common pitfalls to avoid across different stages of multilayer network analyses-some novel and some that always exist in social network analysis but are magnified in multi-layer representations.This paper serves as a primer for building a customized toolkit of multilayer network analyses,to probe components of social structure in animal social systems.  相似文献   

3.
We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean degree and number of blocks. The results provide strong evidence that three different blocks are sufficient to realize the best trade-off between the two measures of robustness, i.e. to obtain the complete front of Pareto-optimal networks. For all values of the mean degree, a characteristic three block structure emerges over large parts of the Pareto-optimal front. This structure can be often characterized as a core-periphery structure, composed of a group of core nodes with high degree connected among themselves and to a periphery of low-degree nodes, in addition to a third group of nodes which is disconnected from the periphery, and weakly connected to the core. Only at both extremes of the Pareto-optimal front, corresponding to maximal robustness against random and targeted node removal, a two-block core-periphery structure or a one-block fully random network are found, respectively.  相似文献   

4.
While individual variation in social behaviour is ubiquitous and causes social groups to differ in structure, how these structural differences affect fitness remains largely unknown. We used social network analysis of replicate bluebanded goby (Lythrypnus dalli) harems to identify the reproductive correlates of social network structure. In stable groups, we quantified agonistic behaviour, reproduction and steroid hormones, which can both affect and respond to social/reproductive cues. We identified distinct, optimal social structures associated with different reproductive measures. Male hatching success (HS) was negatively associated with agonistic reciprocity, a network structure that describes whether subordinates ‘reciprocated’ agonism received from dominants. Egg laying was associated with the individual network positions of the male and dominant female. Thus, males face a trade-off between promoting structures that facilitate egg laying versus HS. Whether this reproductive conflict is avoidable remains to be determined. We also identified different social and/or reproductive roles for 11-ketotestosterone, 17β-oestradiol and cortisol, suggesting that specific neuroendocrine mechanisms may underlie connections between network structure and fitness. This is one of the first investigations of the reproductive and neuroendocrine correlates of social behaviour and network structure in replicate, naturalistic social groups and supports network structure as an important target for natural selection.  相似文献   

5.
Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex) and external factors (e.g., rank dynamics, sex ratio) were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.  相似文献   

6.
This paper demonstrates how associative neural networks as standard models for Hebbian cell assemblies can be extended to implement language processes in large-scale brain simulations. To this end the classical auto- and hetero-associative paradigms of attractor nets and synfire chains (SFCs) are combined and complemented by conditioned associations as a third principle which allows for the implementation of complex graph-like transition structures between assemblies. We show example simulations of a multiple area network for object-naming, which categorises objects in a visual hierarchy and generates different specific syntactic motor sequences ("words") in response. The formation of cell assemblies due to ongoing plasticity in a multiple area network for word learning is studied afterwards. Simulations show how assemblies can form by means of percolating activity across auditory and motor-related language areas, a process supported by rhythmic, synchronized propagating waves through the network. Simulations further reproduce differences in own EEG&MEG experiments between responses to word- versus non-word stimuli in human subjects.  相似文献   

7.
群落结构复杂性的测度方法研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
金森 《植物生态学报》2006,30(6):1030-1039
该文对群落结构复杂性的测度方法的研究进展状况进行了综述。根据测度方法建立的方法基础,将现有的方法分成3类:基于多样性的复杂性测度、基于计算复杂性的测度和基于几何学特征的复杂性测度。对每类测度方法进行了介绍,对其优缺点进行了评述。同时提出了未来研究中应给予重视的问题。结果表明,现有群落结构复杂性的测度方法普遍存在区分能力差的问题,对于基于多样性的结构复杂性测度,目前还缺乏确定各测度属性权重的客观方法;现有的一些基于计算复杂性的结构测度与多样性指标关系过于密切,还不完善,同时其生态学的意义还不明确,而另一些计算复杂性指标还缺乏实际检验。今后,如何建立既具有区分力、又与多样性在概念和数值上都有一定区别的群落结构的计算复杂性的测度方法、如何科学合理地确定复杂性测度中的属性权重以及如何建立结构复杂性的测度和功能过程之间的联系等都是需要深入和系统研究的。由于方法的相似性,有关群落结构复杂性的测度方法也可以应用到其它尺度上的结构复杂性的研究中。  相似文献   

8.
Social structures such as families emerge as outcomes of behavioural interactions among individuals, and can evolve over time if families with particular types of social structures tend to leave more individuals in subsequent generations. The social behaviour of interacting individuals is typically analysed as a series of multiple dyadic (pair-wise) interactions, rather than a network of interactions among multiple individuals. However, in species where parents feed dependant young, interactions within families nearly always involve more than two individuals simultaneously. Such social networks of interactions at least partly reflect conflicts of interest over the provision of costly parental investment. Consequently, variation in family network structure reflects variation in how conflicts of interest are resolved among family members. Despite its importance in understanding the evolution of emergent properties of social organization such as family life and cooperation, nothing is currently known about how selection acts on the structure of social networks. Here, we show that the social network structure of broods of begging nestling great tits Parus major predicts fitness in families. Although selection at the level of the individual favours large nestlings, selection at the level of the kin-group primarily favours families that resolve conflicts most effectively.  相似文献   

9.
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.  相似文献   

10.
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain''s putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.  相似文献   

11.
The increasing ubiquity of web-based social networking services is a striking feature of modern human society. The degree to which individuals participate in these networks varies substantially for reasons that are unclear. Here, we show a biological basis for such variability by demonstrating that quantitative variation in the number of friends an individual declares on a web-based social networking service reliably predicted grey matter density in the right superior temporal sulcus, left middle temporal gyrus and entorhinal cortex. Such regions have been previously implicated in social perception and associative memory, respectively. We further show that variability in the size of such online friendship networks was significantly correlated with the size of more intimate real-world social groups. However, the brain regions we identified were specifically associated with online social network size, whereas the grey matter density of the amygdala was correlated both with online and real-world social network sizes. Taken together, our findings demonstrate that the size of an individual's online social network is closely linked to focal brain structure implicated in social cognition.  相似文献   

12.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   

13.
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by comparing various RIG definitions against a series of network models.  相似文献   

14.
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges.  相似文献   

15.
Observations of primate groups have shown that social learning can lead to the development of temporal stable traditions or even proto-culture. The social structure of primate groups is highly diverse and it has been proposed that differences in the group structure shall influence the patterns of social information transmission. While empirical studies have mainly focused on the psychological mechanisms of social learning in individuals, the phenomenon of information propagation within the group has received relatively little attention. This might be due to the fact that formal theories that allow actual testing have not been formulated, or were kept too simple, ignoring the social dynamics of multi-agent societies. We want to propose a network approach to social information transmission that (1) preserves the complexity of the social structure of primate groups and (2) allows direct application to empirical data. Results from simulation experiments with artificial group structures confirm that association patterns of group-members influence the expected speed of information transmission during the propagation process. Introducing a forgetting rate shows that under certain conditions the proportion of informed individuals will reach a stable rate in some systems while it will drop to zero in others. This suggests that the likelihood to observe temporal stable traditions shall differ between social systems with different structure.  相似文献   

16.
Neuropeptides in the arginine vasotocin/arginine vasopressin (AVT/AVP) family play a major role in the regulation of social behavior by their actions in the brain. In mammals, AVP is found within a circuit of recriprocally connected limbic structures that form the social behavior neural network. This review examines the role played by AVP within this network in controlling social processes that are critical for the formation and maintenance of social relationships: social recognition, social communication and aggression. Studies in a number of mammalian species indicate that AVP and AVP V1a receptors are ideally suited to regulate the expression of social processes because of their plasticity in response to factors that influence social behavior. The pattern of AVP innervation and V1a receptors across the social behavior neural network may determine the potential range and intensity of social responses that individuals display in different social situations. Although fundamental information on how social behavior is wired in the brain is still lacking, it is clear that different social behaviors can be influenced by the actions of AVP in the same region of the network and that AVP can act within multiple regions of this network to regulate the expression of individual social behaviors. The existing data suggest that AVP can influence social behavior by modulating the interpretation of sensory information, by influencing decision making and by triggering complex motor outputs. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

17.
Although kin-selection theory has been widely used to explain the tendency of individuals to bias beneficial behaviors towards relatives living within the same social group, less attention has focused on kin-biased interactions between groups. For animal societies in which females emigrate, as is the case for mountain gorillas (Gorilla beringei beringei), encounters between males in different groups often involve aggressive displays that can escalate to physical violence and fatal injuries. However, recent findings on the little-studied western gorilla (Gorilla gorilla) indicate that interactions between social groups occur more frequently than they do in mountain gorillas and are often, although not always, surprisingly nonaggressive. We investigated the pattern of genetic relationships between individuals of different groups and found evidence suggesting a previously unrecognized "dispersed male network" social structure in western gorillas in which the single males leading social groups were usually related to one or more nearby males. We propose that this provides a basis for extra-group, kin-biased behaviors and may explain the reported peaceful intergroup interactions. Furthermore, these results suggest that a patrilocal social structure, in which males remain in their natal region and potentially benefit from kin associations, is a feature unifying African apes and humans.  相似文献   

18.
对于一些复杂的农业生态系统,人们对其生态过程了解较少,且这些系统的不确定性和模糊性较大,用传统的方法难以模拟这些系统的行为,神经网络模型因为能较精确地模拟这些系统的行为,而引起生态学者们的广泛兴趣。该文着重介绍了误差逆传神经网络模型的结构、算法及其在农业和生态学中的应用研究。误差逆传神经网络模型一般采用三层神经网络模型结构,三层的神经网络模型能模拟任意复杂程度的连续函数,而且因为它的结构小而不容易产生与训练数据的过度吻合。误差逆传神经网络模型算法的主要特征是:利用当前的输入误差对权值进行调整。在生态学和农业研究中,误差逆传神经网络模型通常作为非线性函数模拟器用于预测作物产量、生物生产量、生物与环境之间的关系等。已有的研究表明:误差逆传神经网络模型的模拟精度要远远高于多元线性方程,类似于非线性方程,而在样本量足够的情况下,有一定的外推能力。但是误差逆传神经网络模型需要大量的样本量来保证所求取参数的可靠性,但这在实际研究中很难做到,因而限制了误差逆传神经网络模型的应用。近年来人们提出了强制训练停止、复合模型等多种技术来提高误差逆传神经网络模型的外推能力,也提出了Garson算法、敏感性分析以及随机化检验等技术对误差逆传神经网络模型的机理进行解释。误差逆传神经网络模型的真正优势在于模拟人们了解较少或不确定性和模糊性较大系统的行为,这些是传统模型所无法实现的,因而是对传统机理模型的重要补充。  相似文献   

19.
Long-term studies have shown remarkable similarity in the social behaviour and relationships of Japanese and rhesus macaques living in free-ranging groups. The vast majority of these studies have been of provisioned groups and many key principles have been derived from them. Provisioning is known to influence various aspects of life history and demography, as well as quantitative aspects of social behaviour, such as the frequencies of grooming and aggression. It has been widely assumed, however, that the fundamental characteristics of social behaviour and relationships observed in provisioned populations are representative of those that would occur under natural conditions. This paper reviews findings from fieldwork on Japanese macaques living under natural conditions, and compares them with patterns of social behaviour reported by multiple studies of provisioned groups of both species. Differences are apparent in the nature of social relationships between adult females, between adult males, and between adult males and females. Some of these differences can be attributed to the increased levels of aggression associated with provisioning. Others appear to be related to demographic peculiarities of provisioned groups, such as large size and skewed sex ratio. These differences can be used to generate predictions concerning the influence of ecological variables on the dynamics of social relationships and social structure. Ways in which these predictions could be tested by further fieldwork on provisioned and natural populations are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号