首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

2.
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications.  相似文献   

3.
Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Variable plastid genome sizes and extensive genome rearrangements have been observed across the diatom phylogeny, but little is known about plastid genome evolution within order- or family-level clades. The Thalassiosirales is one of the more comprehensively studied orders in terms of both genetics and morphology. Seven complete diatom plastid genomes are reported here including four Thalassiosirales: Thalassiosira weissflogii, Roundia cardiophora, Cyclotella sp. WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata. The sizes of the seven genomes vary from 116,459 to 129,498 bp, and their genomes are compact and lack introns. The larger size of the plastid genomes of Thalassiosirales compared to other diatoms is due primarily to expansion of the inverted repeat. Gene content within Thalassiosirales is more conserved compared to other diatom lineages. Gene order within Thalassiosirales is highly conserved except for the extensive genome rearrangement in Thalassiosira oceanica. Cyclotella nana, Thalassiosira weissflogii and Roundia cardiophora share an identical gene order, which is inferred to be the ancestral order for the Thalassiosirales, differing from that of the other two Cyclotella species by a single inversion. The genes ilvB and ilvH are missing in all six diatom plastid genomes except for Cerataulina daemon, suggesting an independent gain of these genes in this species. The acpP1 gene is missing in all Thalassiosirales, suggesting that its loss may be a synapomorphy for the order and this gene may have been functionally transferred to the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing in Rhizosolenia imbricata, which represents the first documented instance of the loss of photosynthetic genes in diatom plastid genomes.  相似文献   

4.
The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta) is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta.  相似文献   

5.
Bulbophyllum is the largest genus in Orchidaceae with a pantropical distribution. Due to highly significant diversifications, it is considered to be one of the most taxonomically and phylogenetically complex taxa. The diversification pattern and evolutionary adaptation of chloroplast genomes are poorly understood in this species-rich genus, and suitable molecular markers are necessary for species determination and phylogenetic analysis. A natural Asian section Macrocaulia was selected to estimate the interspecific divergence of chloroplast genomes in this study. Here, we sequenced the complete chloroplast genome of four Bulbophyllum species, including three species from section Macrocaulia. The four chloroplast genomes had a typical quadripartite structure with a genome size ranged from 156,182 to 158,524 bp. The chloroplast genomes included 113 unique genes encoding 79 proteins, 30 tRNAs and 4 rRNAs. Comparison of the four chloroplast genomes showed that the three species from section Macrocaulia had similar structure and gene contents, and shared a number of indels, which mainly contribute to its monophyly. In addition, interspecific divergence level was also great. Several exclusive indels and polymorphism SSR loci might be used for taxonomical identification and determining interspecific polymorphisms. A total of 20 intergenic regions and three coding genes of the most variable hotspot regions were proposed as candidate effective molecular markers for future phylogenetic relationships at different taxonomical levels and species divergence in Bulbophyllum. All of chloroplast genes in four Bulbophyllum species were under purifying selection, while 13 sites within six genes exhibited site-specific selection. A whole chloroplast genome phylogenetic analysis based on Maximum Likelihood, Bayesian and Parsimony methods all supported the monophyly of section Macrocaulia and the genus of Bulbophyllum. Our findings provide valuable molecular markers to use in accurately identifying species, clarifying taxonomy, and resolving the phylogeny and evolution of the genus Bulbophyllum. The molecular markers developed in this study will also contribute to further research of conservation of Bulbophyllum species.  相似文献   

6.
The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor.  相似文献   

7.
Pinus L. is the largest genus of conifers and provides a classical model for studying species divergence and phylogenetic evolution by gymnosperms. However, our poor understanding of sequence divergence in the whole plastid genomes of Pinus species severely hinders studies of their evolution and phylogeny. Thus, we analyzed the sequences of 97 Pinus plastid genomes, including four newly sequenced genomes and 93 previously published plastomes, to explore the evolution and phylogenetic relationships in the genus Pinus. The complete chloroplast genomes of Pinus species ranged in size from 109 640 bp (P. cembra L.) to 121 976 bp (P. glabra Walter), and these genomes comprised circular DNA molecules in a similar manner to those of most gymnosperms. We identified 9108 repeats where most of the repeats comprised the dispersed type with 3983 (44%), followed by tandem repeats with 2999 (33%), and then palindromic repeats with 2126 (23%). Sixteen divergence hotspot regions were identified in Pinus plastid genomes, which could be useful molecular markers for future population genetics studies. Phylogenetic analysis showed that Pinus species could be divided into two diverged clades comprising the subgenera Strobus (single needle section) and Pinus (double needles section). Molecular dating suggested that the genus Pinus originated approximately 130.38 Mya during the late Cretaceous. The two subgenera subsequently split 85.86 Mya, which was largely consistent with the other molecular results based on partial DNA markers. These findings provide important insights into the sequence variations and phylogenetic evolution of Pinus plastid genomes.  相似文献   

8.
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.  相似文献   

9.
Swertia L. is a large genus in Swertiinae (Gentianaceae). In China, many Swertia species are used as traditional Tibetan medicines, known as “Zangyinchen” or “Dida”. However, the phylogenetic relationships among Swertia medicinal plants and their wild relatives have remained unclear. In this study, we sequenced and assembled 16 complete chloroplast (cp) genomes of 10 Swertia species, mainly distributed in Qinghai Province, China. The results showed that these species have typical structures and characteristics of plant cp genomes. The sizes of Swertia cp genomes are ranging from 149,488 bp to 154,097 bp. Most Swertia cp genomes presented 134 genes, including 85 protein coding genes, eight rRNA genes, 37 tRNA genes, and four pseudogenes. Furthermore, the GC contents and boundaries of cp genomes are similar among Swertia species. The phylogenetic analyses indicated that Swertia is a complex polyphyletic group. In addition, positive selection was found in psaI and petL genes, indicating the possible adaptation of Qinghai Swertia species to the light environment of the Qinghai-Tibet plateau. These new cp genome data could be further investigated to develop DNA barcodes for Swertia medicinal plants and for additional systematic studies of Swertia and Swertiinae species.  相似文献   

10.
11.
In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.  相似文献   

12.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

13.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   

14.
The complete plastid genome sequence of the American cranberry (Vaccinium macrocarpon Ait.) was reconstructed using next-generation sequencing data by in silico procedures. We used Roche 454 shotgun sequence data to isolate cranberry plastid-specific sequences of “HyRed” via homology comparisons with complete sequences from several species available at the National Center for Biotechnology Information database. Eleven cranberry plastid contigs were selected for the construction of the plastid genome-based homologies and on raw reads flowing through contigs and connection information. We assembled and annotated a cranberry plastid genome (82,284 reads; 185x coverage) with a length of 176 kb and the typical structure found in plants, but with several structural rearrangements in the large single-copy region when compared to other plastid asterid genomes. To evaluate the reliability of the sequence data, phylogenetic analysis of 30 species outside the order Ericales (with 54 genes) showed Vaccinium inside the clade Asteridae, as reported in other studies using single genes. The cranberry plastid genome sequence will allow the accumulation of critical data useful for breeding and a suite of other genetic studies.  相似文献   

15.

Background

Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing.

Methodology/Principal Findings

The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons.

Conclusion

The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family.  相似文献   

16.
17.
Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.  相似文献   

18.
《Genomics》2020,112(1):581-591
Previous studies to resolve phylogenetic and taxonomic discrepancies of Hibiscus remained inconclusive. Here, we report chloroplast genome sequence of Hibiscus rosa-sinensis. Hibiscus rosa-sinensis chloroplast genome was 160,951 bp, comprising of large single copy (89,509 bp) and small single copy (20,246 bp) regions, separated by IRa and IRb (25,598 bp each). The genome contained 130 genes including 85 protein-coding genes, 37 transfer RNAs and 8 ribosomal RNAs. Comparative analyses of chloroplast genomes revealed similar structure among 12 species within family Malvaceae. Evolutionary rates of 77 protein-coding genes showed 95% similarities. Analyses of codon usage, amino acid frequency, putative RNA editing sites, and repeats showed a great extent of similarities between Hibiscus rosa-sinensis and Hibiscus syriacus. We identified 30 mutational hotpots including psbZ-trnG, trnK-rps16, trnD-trnY, trnW-trnP, rpl33-rps18, petG-trnW, trnS-trnG, trnH-psbA, atpB-rbcL, and rpl32-trnL that might be used as polymorphic and robust markers to resolve phylogenetic discrepancies in genus Hibiscus.  相似文献   

19.
Despite Diplostomum baeri (Dubois, 1937) being one of the most widely distributed parasites of freshwater fish, there is no complete mitochondrial (mt) genome currently available. The complicated systematics presented by D. baeri has hampered investigations into the species distributions and infective dynamics of the species. Within this study we obtained complete mt genome sequences of D. baeri and assessed its phylogenetic relationship with other species of Digenea. The complete mitochondrial genome of D. baeri is 14,480 bp in length, containing 36 genes in total. The phylogenetic tree resulting from Bayesian inference of concatenated 12 protein coding gene sequences placed D. baeri alongside published mt genomes of Diplostomidae, with the overall taxonomic placement of the genus being a sister lineage of the order Plagiochiida The characterization of further mitochondrial genomes within the family Diplostomidae will help progress phylogenetic and epidemiological investigations as well as providing a framework for the analysis of diagnostic markers to be used in further monitoring of the parasite worldwide.  相似文献   

20.
《Genomics》2021,113(5):3072-3082
Rubiaceae is the fourth largest and a taxonomically complex family of angiosperms. Many species in this family harbor low reproductive isolation and frequently exhibit inconsistent phenotypic characteristics. Therefore, taxonomic classification and their phylogenetic relationships in the Rubiaceae family is challenging, especially in the genus Leptodermis. Considering the low taxonomic confusion and wide distribution, Leptodermis oblonga is selected as a representative Leptodermis for genome sequencing. The assemblies resulted in 497 Mbp nuclear and 155,100 bp chloroplast genomes, respectively. Using the nuclear genome as a reference, SNPs were called from 37 Leptodermis species or varieties. The phylogenetic tree based on SNPs exhibited high resolution for species delimitation of the complex and well-resolved phylogenetic relationships in the genus. Moreover, 28,987 genes were predicted in the nuclear genome and used for comparative genomics study. As the first chromosomal-level genome of the subfamily Rubioideae in Rubiaceae, it will provide fruitfully evolutionary understanding in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号