首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

DNA gyrase, an enzyme once thought to be unique to bacteria, is also found in some eukaryotic plastids including the apicoplast of Apicomplexa such as Plasmodium falciparum and Toxoplasma gondii which are important disease-causing organisms. DNA gyrase is an excellent target for antibacterial drugs, yet such antibacterials seem ineffective against Apicomplexa. Characterisation of the apicoplast gyrases would be a useful step towards understanding why this should be so. While purification of active apicoplast gyrase has proved impossible to date, in silico analyses have allowed us to discover differences in the apicoplast proteins. The resulting predicted structural and functional differences will be a first step towards development of apicoplast-gyrase specific inhibitors.

Results

We have carried out sequence analysis and structural predictions of the enzymes from the two species and find that P. falciparum gyrase lacks a GyrA box, but T. gondii may retain one. All proteins contained signal/transport peptides for localization to the apicoplast but T. gondii Gyrase B protein lacks the expected hydrophobic region. The most significant difference is in the GyrA C-terminal domain: While the cores of the proteins, including DNA binding and cleavage regions are essentially unchanged, both apicoplast gyrase A proteins have C-terminal domains that are significantly larger than bacterial counterparts and are predicted to have different structures.

Conclusion

The apicoplast gyrases differ significantly from bacterial gyrases while retaining similar core domains. T. gondii Gyrase B may have an unusual or inefficient mechanism of localisation to the apicoplast. P.falciparum gyrase, lacks a GyrA box and is therefore likely to be inefficient in DNA supercoiling. The C-terminal domains of both apicoplast Gyrase A proteins diverge significantly from the bacterial proteins. We predict that an additional structural element is present in the C-terminal domain of both apicoplast Gyrase A proteins, including the possibility of a β-pinwheel with a non-canonical number of blades. These differences undoubtedly will affect the DNA supercoiling mechanism and have perhaps evolved to compensate for the lack of Topoisomerase IV in the apicoplast. These data will be useful first step towards further characterisation and development of inhibitors for apicoplast gyrases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0416-9) contains supplementary material, which is available to authorized users.  相似文献   

2.
DNA topoisomerases manage chromosome supercoiling and organization in all cells. Gyrase, a prokaryotic type IIA topoisomerase, consumes ATP to introduce negative supercoils through a strand passage mechanism. All type IIA topoisomerases employ a similar set of catalytic domains for function; however, the activity and specificity of gyrase are augmented by a specialized DNA binding and wrapping element, termed the C-terminal domain (CTD), which is appended to its GyrA subunit. We have discovered that a nonconserved, acidic tail at the extreme C terminus of the Escherichia coli GyrA CTD has a dramatic and unexpected impact on gyrase function. Removal of the CTD tail enables GyrA to introduce writhe into DNA in the absence of GyrB, an activity exhibited by other GyrA orthologs, but not by wild-type E. coli GyrA. Strikingly, a "tail-less" gyrase holoenzyme is markedly impaired for DNA supercoiling capacity, but displays normal ATPase function. Our findings reveal that the E. coli GyrA tail regulates DNA wrapping by the CTD to increase the coupling efficiency between ATP turnover and supercoiling, demonstrating that CTD functions can be fine-tuned to control gyrase activity in a highly sophisticated manner.  相似文献   

3.
DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.  相似文献   

4.
The C-terminal domain of the A subunit of DNA gyrase, which we term Gac, is naturally synthesized in Borrelia burgdorferi as an abundant DNA-binding protein. Full-length GyrA, which includes the C-terminal domain, is also synthesized by the spirochete and functions as a subunit of DNA gyrase. We have disrupted synthesis of Gac as an independent protein and demonstrated that it is not essential for growth in a coumarin-resistant background. We detected no alterations in DNA maintenance, condensation, or topology in B. burgdorferi lacking this small DNA-binding protein.  相似文献   

5.
6.
Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~ 1000-fold weaker than the interaction with GyrA.  相似文献   

7.
8.
Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like protein (PfHU) involved in DNA compaction in the apicoplast. PfHU is associated with apicoplast DNA and is expressed throughout the parasite's intra-erythocytic cycle. The protein binds DNA in a sequence nonspecific manner with a minimum binding site length of ~27 bp and a Kd of ~63 nM and displays a preference for supercoiled DNA. PfHU is capable of condensing Escherichia coli nucleoids in vivo indicating its role in DNA compaction. The unique 42 aa C-terminal extension of PfHU influences its DNA condensation properties. In contrast to bacterial HUs that bend DNA, PfHU promotes concatenation of linear DNA and inhibits DNA circularization. Atomic Force Microscopic study of PfHU–DNA complexes shows protein concentration-dependent DNA stiffening, intermolecular bundling and formation of DNA bridges followed by assembly of condensed DNA networks. Our results provide the first functional characterization of an apicomplexan HU protein and provide additional evidence for red algal ancestry of the apicoplast.  相似文献   

9.
10.
Type II topoisomerases bind to DNA at the catalytic domain across the DNA gate. DNA gyrases also bind to DNA at the non-homologous C-terminal domain of the GyrA subunit, which causes the wrapping of DNA about itself. This unique mode of DNA binding allows gyrases to introduce the negative supercoils into DNA molecules. We have investigated the biochemical characteristics of Staphylococcus aureus (S. aureus) gyrase. S. aureus gyrase is known to require high concentrations of potassium glutamate (K-Glu) for its supercoiling activity. However, high concentrations of K-Glu are not required for its relaxation and decatenation activities. This is due to the requirement of high concentrations of K-Glu for S. aureus gyrase-mediated wrapping of DNA. These results suggest that S. aureus gyrase can bind to DNA at the catalytic domain independent of K-Glu concentration, but high concentrations of K-Glu are required for the binding of the C-terminal domain of GyrA to DNA and the wrapping of DNA. Thus, salt modulates the DNA binding mode and the catalytic activity of S. aureus gyrase. Quinolone drugs can stimulate the formation of covalent S. aureus gyrase-DNA complexes, but high concentrations of K-Glu inhibit the formation of S. aureus gyrase-quinolone-DNA ternary complexes. In the absence of K-Glu, ternary complexes formed with S. aureus gyrase cannot arrest replication fork progression in vitro, demonstrating that the formation of a wrapped ternary complex is required for replication fork arrest by a S. aureus gyrase-quinolone-DNA ternary complex.  相似文献   

11.
12.
Escherichia coliDNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43-kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, competein vivowith the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoilingin vivo.This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activityin vivo.Thus, ourin vivoapproach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or the GyrB/GyrB or GyrB/GyrA protein interactions.  相似文献   

13.
DNA gyrase catalyses the adenosine triphosphate-dependent introduction of negative supercoils into DNA. The enzyme binds a DNA-segment at the so-called DNA-gate and cleaves both DNA strands. DNA extending from the DNA-gate is bound at the perimeter of the cylindrical C-terminal domains (CTDs) of the GyrA subunit. The CTDs are believed to contribute to the wrapping of DNA around gyrase in a positive node as a prerequisite for strand passage towards negative supercoiling. A conserved seven amino acid sequence motif in the CTD, the so-called GyrA-box, has been identified as a hallmark feature of gyrases. Mutations of the GyrA-box abolish supercoiling. We show here that the GyrA-box marginally stabilizes the CTDs. Although it does not contribute to DNA binding, it is required for DNA bending and wrapping, and it determines the geometry of the bound DNA. Mutations of the GyrA-box abrogate a DNA-induced conformational change of the gyrase N-gate and uncouple DNA binding and adenosine triphosphate hydrolysis. Our results implicate the GyrA-box in coordinating DNA binding and the nucleotide cycle.  相似文献   

14.
In a previous report (Reece, R. J., and Maxwell, A. (1989) J. Biol. Chem. 264, 19648-19653) we showed that treatment of the Escherichia coli DNA gyrase A protein with trypsin generates two stable fragments. The N-terminal 64-kDa fragment supports DNA supercoiling, while the C-terminal 33-kDa fragment shows no enzymic activity. We proposed that the 64-kDa fragment represents the DNA breakage-reunion domain of the A protein. We have now engineered the gyrA gene such that the 64-kDa protein is generated as a gene product. The properties of this protein confirm the findings of the experiments with the 64-kDa tryptic fragment. We have also generated a series of deletions of the gyrA gene such that C-terminal and N-terminal truncated versions of the A protein are produced. The smallest of the N-terminal fragments found to be able to carry out the DNA breakage-reunion reaction is GyrA(1-523). The cleavage reaction mediated by this protein occurs with equal efficacy as that performed by the intact GyrA protein. Deletion of the N-terminal 6 amino acids from either the A protein or these deletion derivatives has no effect on enzymic activity, while deletion of the N-terminal 69 amino acids completely abolishes the DNA breakage-reunion reaction. Therefore the smallest GyrA protein we have found that will perform DNA breakage and reunion is GyrA(7-523). A model is proposed for the domain organization of the gyrase A protein.  相似文献   

15.
Apicomplexans are the causative agents of numerous important infectious diseases including malaria and toxoplasmosis. Most of them harbour a chloroplast-like organelle called the apicoplast that is essential for the parasites’ metabolism and survival. While most apicoplast proteins are nuclear encoded, the organelle also maintains its own genome, a 35 kb circle. In this study we used Toxoplasma gondii to identify and characterise essential proteins involved in apicoplast genome replication and to understand how apicoplast genome segregation unfolds over time. We demonstrated that the DNA replication enzymes Prex, DNA gyrase and DNA single stranded binding protein localise to the apicoplast. We show in knockdown experiments that apicoplast DNA Gyrase A and B, and Prex are required for apicoplast genome replication and growth of the parasite. Analysis of apicoplast genome replication by structured illumination microscopy in T. gondii tachyzoites showed that apicoplast nucleoid division and segregation initiate at the beginning of S phase and conclude during mitosis. Thus, the replication and division of the apicoplast nucleoid is highly coordinated with nuclear genome replication and mitosis. Our observations highlight essential components of apicoplast genome maintenance and shed light on the timing of this process in the context of the overall parasite cell cycle.  相似文献   

16.
DNA gyrase is the only type II topoisomerase in Mycobacterium tuberculosis and needs to catalyse DNA supercoiling, relaxation and decatenation reactions in order to fulfil the functions normally carried out by gyrase and DNA topoisomerase IV in other bacteria. We have obtained evidence for the existence of a Ca2+-binding site in the GyrA subunit of M. tuberculosis gyrase. Ca2+ cannot support topoisomerase reactions in the absence of Mg2+, but partial removal of Ca2+ from GyrA by dialysis against EGTA leads to a modest loss in relaxation activity that can be restored by adding back Ca2+. More extensive removal of Ca2+ by denaturation of GyrA and dialysis against EGTA results in an enzyme with greatly reduced enzyme activities. Mutation of the proposed Ca2+-binding residues also leads to loss of activity. We propose that Ca2+ has a regulatory role in M. tuberculosis gyrase and suggest a model for the modulation of gyrase activity by Ca2+ binding.  相似文献   

17.
Gyrase is a type II DNA topoisomerase that introduces negative supercoils into DNA in an ATP-dependent reaction. It consists of a topoisomerase core, formed by the N-terminal domains of the two GyrA subunits and by the two GyrB subunits, that catalyzes double-stranded DNA cleavage and passage of a second double-stranded DNA through the gap in the first. The C-terminal domains (CTDs) of the GyrA subunits form a β-pinwheel and bind DNA around their positively charged perimeter. As a result, DNA is bound as a positive supercoil that is converted into a negative supercoil by strand passage. The CTDs contain a conserved 7-amino acid motif that connects blades 1 and 6 of the β-pinwheel and is a hallmark feature of gyrases. Deletion of this so-called GyrA-box abrogates DNA bending by the CTDs and DNA-induced narrowing of the N-gate, affects T-segment presentation, reduces the coupling of DNA binding to ATP hydrolysis, and leads to supercoiling deficiency. Recently, a severe loss of supercoiling activity of Escherichia coli gyrase upon deletion of the non-conserved acidic C-terminal tail (C-tail) of the CTDs has been reported. We show here that, in contrast to E. coli gyrase, the C-tail is a very moderate negative regulator of Bacillus subtilis gyrase activity. The C-tail reduces the degree of DNA bending by the CTDs but has no effect on DNA-induced conformational changes of gyrase that precede strand passage and reduces DNA-stimulated ATPase and DNA supercoiling activities only 2-fold. Our results are in agreement with species-specific, differential regulatory effects of the C-tail in gyrases from different organisms.  相似文献   

18.
DNA topoisomerases manage chromosome supercoiling and organization in all forms of life. Gyrase, a prokaryotic heterotetrameric type IIA topo, introduces negative supercoils into DNA by an ATP-dependent strand passage mechanism. All gyrase orthologs rely on a homologous set of catalytic domains for function; however, these enzymes also can possess species-specific auxiliary regions. The gyrases of many gram-negative bacteria harbor a 170-amino acid insertion of unknown architecture and function in the metal- and DNA-binding TOPRIM domain of the GyrB subunit. We have determined the structure of the 212 kDa Escherichia coli gyrase DNA binding and cleavage core containing this insert to 3.1 Å resolution. We find that the insert adopts a novel, extended fold that braces the GyrB TOPRIM domain against the coiled-coil arms of its partner GyrA subunit. Structure-guided deletion of the insert greatly reduces the DNA binding, supercoiling and DNA-stimulated ATPase activities of gyrase. Mutation of a single amino acid at the contact point between the insert and GyrA more modestly impairs supercoiling and ATP turnover, and does not affect DNA binding. Our data indicate that the insert has two functions, acting as a steric buttress to pre-configure the primary DNA-binding site, and serving as a relay that may help coordinate communication between different functional domains.  相似文献   

19.
Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor. The apicoplast is a useful drug target but the specificity of compounds believed to target apicoplast fatty acid biosynthesis has become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides that inhibit the plastid acetyl Coenzyme A (Co-A) carboxylase of plants also kill Plasmodium falciparum in vitro, but their mode of action remains undefined. We characterised the gene for acetyl Co-A carboxylase in P. falciparum. The P. falciparum acetyl-CoA carboxylase gene product is expressed in blood stage parasites and accumulates in the apicoplast. Ablation of the gene did not render parasites insensitive to herbicides, suggesting that these compounds are acting off-target in blood stages of P. falciparum.  相似文献   

20.
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNAGln biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNAGlu and tRNAGln, determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNAGln biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号