共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis. 相似文献
2.
3.
F. Porro M. Rosato-Siri E. Leone L. Costessi A. Iaconcig E. Tongiorgi A. F. Muro 《Genes, Brain & Behavior》2010,9(1):84-96
Adducins are a family of proteins found in cytoskeleton junctional complexes, which bind and regulate actin filaments and actin-spectrin complexes. In brain, adducin is expressed at high levels and is identified as a constituent of synaptic structures, such as dendritic spines and growth cones of neurons. Adducin-induced changes in dendritic spines are involved in activity-dependent synaptic plasticity processes associated with learning and memory, but the mechanisms underlying these functions remain to be elucidated. Here, β-adducin knockout (KO) mice were used to obtain a deeper insight into the role of adducin in these processes. We showed that β-adducin KO mice showed behavioral, motor coordination and learning deficits together with an altered expression and/or phosphorylation levels of α-adducin and γ-adducin. We found that β-adducin KO mice exhibited deficits in learning and motor performances associated with an impairment of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus. These effects were accompanied by a decrease in phosphorylation of adducin, a reduction in α-adducin expression levels and upregulation of γ-adducin in hippocampus, cerebellum and neocortex of mutant mice. In addition, we found that the mRNA encoding β-adducin is also located in dendrites, where it may participate in the fine modulation of LTP and LTD. These results strongly suggest coordinated expression and phosphorylation of adducin subunits as a key mechanism underlying synaptic plasticity, motor coordination performance and learning behaviors. 相似文献
4.
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosy- naptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages.2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses.3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30.4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3. 相似文献
5.
Tortosa E Montenegro-Venegas C Benoist M Härtel S González-Billault C Esteban JA Avila J 《The Journal of biological chemistry》2011,286(47):40638-40648
Microtubule-associated protein 1B (MAP1B) is prominently expressed during early stages of neuronal development, and it has been implicated in axonal growth and guidance. MAP1B expression is also found in the adult brain in areas of significant synaptic plasticity. Here, we demonstrate that MAP1B is present in dendritic spines, and we describe a decrease in the density of mature dendritic spines in neurons of MAP1B-deficient mice that was accompanied by an increase in the number of immature filopodia-like protrusions. Although these neurons exhibited normal passive membrane properties and action potential firing, AMPA receptor-mediated synaptic currents were significantly diminished. Moreover, we observed a significant decrease in Rac1 activity and an increase in RhoA activity in the post-synaptic densities of adult MAP1B(+/-) mice when compared with wild type controls. MAP1B(+/-) fractions also exhibited a decrease in phosphorylated cofilin. Taken together, these results indicate a new and important role for MAP1B in the formation and maturation of dendritic spines, possibly through the regulation of the actin cytoskeleton. This activity of MAP1B could contribute to the regulation of synaptic activity and plasticity in the adult brain. 相似文献
6.
脊髓背角Ⅱ板层长时程增强诱导及维持过程中的突触形态计量学研究 总被引:1,自引:0,他引:1
本研究和体视学方法探讨了在C纤维诱发电位长时程增强(long—-term potentiation,LTP)的诱导及维持过程中的脊髓背角Ⅱ板层的突触形念变化。结果显示(1)在LTP形成后30min,Ⅱ板层内的突触后致密物质(postsynaptic density,PSD)增厚,突触间隙增宽;(2)在LTP形成后3h,PSD厚度、突触间隙宽度及突触界面曲率都有明显增加;(3)在LTP诱导和维持全过程中,总突触的数密度比对照组有明显增高。(4)在LTP形成后3h和5h,穿孔性突触的数密度与对照组比较有明显增高。上述结果显示:PSD增厚是LTP诱导阶段的主要形态学变化。突触界面曲率增人及穿孔突触数目增多是LTP维持阶段的主要形态学基础。 相似文献
7.
Cyclase-associated protein (CAP) is a highly conserved and widely distributed protein that links the nutritional response signaling to cytoskeleton remodeling. In yeast, CAP is a component of the adenylyl cyclase complex and helps to activate the Ras-mediated catalytic cycle of the cyclase. While the N-terminal domain of CAP (N-CAP) provides a binding site for adenylyl cyclase, the C-terminal domain (C-CAP) possesses actin binding activity. Our attempts to crystallize full-length recombinant CAP from Dictyostelium discoideum resulted in growth of orthorhombic crystals containing only the N-terminal domain (residues 42-227) due to auto-proteolytic cleavage. The structure was solved by molecular replacement with data at 2.2 A resolution. The present crystal structure allows the characterization of a head-to-tail N-CAP dimer in the asymmetric unit and a crystallographic side-to-side dimer. Comparison with previously published structures of N-CAP reveals variable modes of dimerization of this domain, but the presence of a common interface for the side-to-side dimer. 相似文献
8.
Tancredi V D'Antuono M Cafè C Giovedì S Buè MC D'Arcangelo G Onofri F Benfenati F 《Journal of neurochemistry》2000,75(2):634-643
9.
Sam F. Cooke Mark F. Bear 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1633)
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components. 相似文献
10.
Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum 总被引:4,自引:0,他引:4
Ksiazek D Brandstetter H Israel L Bourenkov GP Katchalova G Janssen KP Bartunik HD Noegel AA Schleicher M Holak TA 《Structure (London, England : 1993)》2003,11(9):1171-1178
Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric. 相似文献
11.
PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity 总被引:1,自引:0,他引:1
Nakamura Y Wood CL Patton AP Jaafari N Henley JM Mellor JR Hanley JG 《The EMBO journal》2011,30(4):719-730
Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in this process have not yet been identified. Here, we show that PICK1 regulates spine size in hippocampal neurons via inhibition of the Arp2/3 complex. PICK1 knockdown increases spine size, whereas PICK1 overexpression reduces spine size. NMDA receptor activation results in spine shrinkage, which is blocked by PICK1 knockdown or overexpression of a PICK1 mutant that cannot bind Arp2/3. Furthermore, we show that PICK1-Arp2/3 interactions are required for functional hippocampal LTD. This work demonstrates that PICK1 is a novel regulator of spine dynamics. Via Arp2/3 inhibition, PICK1 has complementary yet distinct roles during LTD to regulate AMPA receptor trafficking and spine size, and therefore functions as a crucial factor in both structural and functional plasticity. 相似文献
12.
Mavoungou C Israel L Rehm T Ksiazek D Krajewski M Popowicz G Noegel AA Schleicher M Holak TA 《Journal of biomolecular NMR》2004,29(1):73-84
Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands. 相似文献
13.
Animals were trained to discriminate two natural odors while another group was trained to discriminate between a patterned electrical stimulation distributed on the lateral olfactory tract (LOT), labelled olfaco-mimetic stimulation (OMS), used as an olfactory cue versus a natural odor. No statistically significant difference was observed in behavioral data between these two groups. The animals trained to learn the meaning of the OMS exhibited a gradual long-term potentiation (LTP) phenomenon in the piriform cortex. When a group of naive animals was pseudo-conditioned, giving the OMS for the same number of sessions but without any olfactory training, no LTP was recorded. These results indicate that the process of learning olfactory association gradually potentiates cortical synapses in a defined cortical terminal field, and may explain why LTP in the piriform cortex is not elicited by the patterned stimulation itself, but only in an associative context. As olfactory and hippocampus regions are connected via the lateral entorhinal cortex, the olfactomimetic model was used to study the dynamic of involvement of the dentate gyrus (DG) in learning and memory of this associative olfactory task. Polysynaptic field potentials, evoked by the LOT stimulation, were recorded in the molecular layer of the ipsilateral DG. An early and rapid (2nd session) potentiation was observed when a significant discrimination of the two cues began to be observed. The onset latency of the potentiated response was 30–40 ms. When a group of naive animals was pseudoconditioned, no change was observed. Taken together, these results support the hypothesis that early activation of the DG during the learning of olfactory cue allows the progressive storage of olfactory information in a defined set of potentiated cortical synapses. The onset latency of the polysynaptic potentiated responses suggests the existence of a reactivating hippocampal loops during the processing of olfactory information. 相似文献
14.
《European journal of cell biology》2022,101(2):151207
Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs’ physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells. 相似文献
15.
Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding. 总被引:2,自引:3,他引:2 下载免费PDF全文
In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2. 相似文献
16.
17.
《Cell calcium》2017
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus. 相似文献
18.
Using field potential recording in the CA1 region of the rat hippocampal slices, the effects of eugenol on synaptic transmission and long-term potentiation (LTP) were investigated. Population spikes (PS) were recorded in the stratum pyramidal following stimulation of stratum fibers. To induce LTP, eight episodes of theta pattern primed-bursts (PBs) were delivered. Eugenol decreased the amplitude of PS in a concentration-dependent manner. The effect was fast and completely reversible. Eugenol had no effect on PBs-induced LTP of PS. It is concluded that while eugenol depresses synaptic transmission it does not affect the ability of CA1 synapses for tetanus-induced LTP and plasticity. 相似文献
19.
Exposure to chronic drugs of abuse has been reported to produce significant changes in postsynaptic protein profile, dendritic spine morphology and synaptic transmission. In the present study we demonstrate alterations in dendritic spine morphology in the frontal cortex and nucleus accumbens of mice following chronic morphine treatment as well as during abstinence for two months. Such alterations were accompanied with significant upregulation of the postsynaptic protein Shank1 in synaptosomal enriched fractions. mRNA levels of Shank1 was also markedly increased during morphine treatment and during withdrawal. Studies of the different postsynaptic proteins at the protein and mRNA levels showed significant alterations in the morphine treated groups compared to that of saline treated controls. Taken together, these observations suggest that Shank1 may have an important role in the regulation of spine morphology induced by chronic morphine leading to addiction. 相似文献
20.
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity–diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet. 相似文献