首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
沙地云杉种内、种间竞争的研究   总被引:59,自引:1,他引:59       下载免费PDF全文
根据调查资料,采用Hegyi提出的单木竞争指数模型CI=∑Nj=1(Dj/Di)1Lij对内蒙古白音敖包自然保护区的沙地云杉种内、种间的竞争强度进行定量分析。结果表明:沙地云杉种内竞争强度随着林木径级的增大而逐渐减小;种内竞争和种间竞争的强度顺序为:山杨>沙地云杉种内>白桦>家榆。竞争强度与对象木的胸高直径服从幂函数关系CI=AD-B,当沙地云杉胸高直径达到40cm以上时,竞争强度变化很小。利用模型预测了沙地云杉种内、种间的竞争强度。说明Hegyi的单木竞争模型可为种内、种间竞争指数的研究提供可适用的数量指标。  相似文献   

3.
Widely distributed terrestrial ectotherms from the southern European peninsulas show patterns of subdivision (related to isolation in temperate refugia) that allow us to test the relative importance of phylogeographic lineage, population of origin and familial effects as sources of variation for life-history traits. We collected gravid females from 15 geographically separated populations of the lacertid lizard Psammodromus algirus, a widely distributed species with well differentiated eastern and western lineages. We incubated eggs under two treatments of constant (28°C) and fluctuating (28 ± 4°C) temperature, and we examined clutch, population, and lineage effects on several traits of females, eggs, and hatchlings. Incubation time was mainly explained by differences between lineages, but it was also influenced by population and female effects. Within each lineage, incubation was shorter at cooler and wetter sites, and for a given climate it was shorter for eastern than for western populations, suggesting that countergradient variation has evolved independently in the two lineages. Female size, clutch size, and relative fecundity were primarily influenced by inter-population differences, a pattern that seemed attributable to environmental differences in productivity, because mean female size was positively correlated with a gradient of increasing precipitation and decreasing temperature. Clutch size was mainly, but not entirely, dependent on female SVL, suggesting both a proximate effect of local conditions and intrinsic differences among populations. Females from drier and warmer sites produced larger hatchlings. Mean egg mass was mainly determined by familial effects. Eggs incubated at a constant temperature hatched earlier than did their siblings incubated at fluctuating temperatures, a fact that could be explained by considering that in Mediterranean environments developmental rate might increase at a lower speed above average incubation temperature than it does decrease below it.  相似文献   

4.
Environmental use of genetically engineered microorganisms has raised concerns about potential ecological impact. This research evaluated the survival, competitiveness, and effects upon selected bacterial genera of wild-type and genetically engineered Erwinia carotovora subsp. carotovora to ascertain if differences between the wild-type and genetically engineered strains exist in soil microcosms. The engineered strain contained a chromosomally inserted gene for kanamycin resistance. No significant differences in survival in nonsterile soil over 2 months or in the competitiveness of either strain were observed when the strains were added concurrently to microcosms. For reasons that remain unclear, the engineered strain did survive longer in sterilized soil. The effects of both strains on total bacteria, Pseudomonas and Staphylococcus strains, and actinomycetes were observed. While some apparent differences were observed, they were not statistically significant. A better understanding of the microbial ecology of engineered bacteria, especially pathogens genetically altered for use as biological control agents, is essential before commercial applications can be accomplished.  相似文献   

5.
6.
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.  相似文献   

7.
In a context where hosts are distributed in patches and susceptible to parasitism for a limited time, female parasitoids foraging for hosts might experience intraspecific competition. We investigated the effects of host and parasitoid developmental stage and intraspecific competition among foraging females on host-searching behaviour in the parasitoid wasp Hyposoter horticola. We found that H. horticola females have a pre-reproductive adult stage during which their eggs are not mature yet and they forage very little for hosts. The wasps foraged for hosts more once they were mature. Behavioural experiments showed that wasps’ foraging activity also increased as host eggs aged and became susceptible to parasitism, and as competition among foraging wasps increased.  相似文献   

8.
Niche differentiation, assumed to be a key mechanism of species coexistence, requires that species differ in their functional traits. So far it remains unclear to which extent trait plasticity leads to niche shifts of species at higher plant diversity, thereby increasing or decreasing niche overlap between species. To analyse this question it is convenient to measure niches indirectly via the variation in resource-uptake traits rather than directly via the resources used. We provisionally call these indirectly measured niches trait-based niches. We studied shoot- and leaf-morphological characteristics in seven legume species in monoculture and multi-species mixture in experimental grassland. Legume species varied in the extent of trait variation in response to plant diversity. Trait plasticity led to significant shifts in species niches in multiple dimensions. Single-species niches in several traits associated with height growth and filling of canopy space were expanded, while other niche dimensions were compressed or did not change with plant diversity. Niche separation among legumes decreased in dimensions related to height growth and space filling, but increased in dimensions related to leaf size and morphology. The total extent of occupied niche space was larger in mixture than in the combined monocultures for dimensions related to leaf morphology and smaller for dimensions related to whole-plant architecture. Taller growth, greater space filling and greater plasticity in shoot height were positively, while larger values and greater plasticity in specific leaf area were negatively related with increased performance of species in mixture. Our study shows that trait variation in response to plant diversity shifts species niches along trait axes. Plastically increased niche differentiation is restricted to niche dimensions that are apparently not related to size-dependent differences between species, but functional equivalence (convergence in height growth) rather than complementarity (divergence in traits associated with light acquisition) explains increased performance of legumes in mixture.  相似文献   

9.
We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species'' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid.  相似文献   

10.
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.  相似文献   

11.
Historically, a species’ social system was perceived to be a fixed attribute and deviations were usually treated as aberrant or maladaptive. Over the last few decades, socioecologists have started to recognize that variation in social systems is normal and adaptive. Here I explore how ecological variation affects the mating system of a nocturnal primate, the spectral tarsier, Tarsius spectrum. Several studies of the spectral tarsier have illustrated variation in this species’ mating system. Although most groups exhibit a monogamous mating system, a small proportion of the population consistently exhibits a polygynous mating system. I conducted this study at Tangkoko Nature Reserve in Sulawesi, Indonesia during 2007. I found that group size was highly variable, ranging from 2 individuals to as many as 8 individuals per sleeping site. Although most groups (21 of 26) were composed of a single adult male and a single adult female, ca. 19% of the groups contained 2 adult females. Three of the 5 groups with 2 adult females contained 2 young infants. As might be expected, polygynous groups were larger than were monogamous groups. The mean group size of monogamous groups was 2.9, whereas the mean group size of polygynous groups was 6.0. Polygynous groups were also more likely to use Ficus caulocarpa trees than were the monogamous groups. Polygynous groups consistently used more sleeping sites as well as larger diameter sleeping trees, than did monogamous groups. The large-diameter fig trees are ideal homes for the spectral tarsiers in that they offer multiple entrances and exits as well as protection from the elements. Polygynous and monogamous groups exhibited no differences in insect biomass available, home range size, or height of sleeping tree. These results support the hypothesis that ecological variation is an important determinant of mating system within spectral tarsiers.  相似文献   

12.
通过对不同方法的比较分析,提出了确定巴山冷杉(Abies fargesii)植株间竞争强度和竞争范围的新方法,并利用改进的方法研究了其种内和种间竞争强度。结果表明:随对象木胸径的增大,由于巴山冷杉种群自然稀疏过程中密度调节作用,植株距离增加,种内竞争强度降低;巴山冷杉主要分布于亚高山地段,群落内太白红杉(Larixchinensis)数量较多,胸径较大,种内与种间竞争关系顺序为:太白红杉-巴山冷杉>巴山冷杉-巴山冷杉>牛皮桦(Betula utilis)-巴山冷杉>其它树种-巴山冷杉;竞争强度和对象木胸径的关系服从幂函数关系(CI=AD-B),当巴山冷杉胸径达到25 cm以上时,种内和种间竞争强度变化较小。研究表明,改进的方法能很好地预测巴山冷杉种内和种间的竞争强度。  相似文献   

13.
Gradients of environmental stress may affect biotic interactions in unpredictable ways responding to climate variation, depending on the abiotic stress tolerance of interacting partners. Here, we study the effect of local climate on the intensity of feather mites in six mountain passerines along a 1400 m elevational gradient characterized by shifting temperature and rainfall. Although obligatory symbionts of warm-blooded organisms are assumed to live in mild and homeothermic environments, those inhabiting external, non-blood-irrigated body portions of the host organism, such as feather mites, are expected to endure exposure to the direct influence of a fluctuating climate. As expected, feather mite intensity declined with elevation in all bird species, a pattern that was also found in cold-adapted passerines that have typical alpine habits. The elevation cline was mainly explained by a positive effect of the average temperature upon mite intensity in five of the six species studied. Precipitation explained less variance in mite intensity than average temperature, and showed a negative correlation in half of the studied species. We found no climate-driven migration of mites along the wings of birds, no replacement of mite species along elevation gradients and no association with available food resources for mites (estimated by the size of the uropygial gland). This study suggests that ectosymbionts of warm-blooded animals may be highly sensitive to climatic variation and become less abundant under stressful environmental conditions, providing empirical evidence of the decline of specialized biotic interactions among animal species at high elevations.  相似文献   

14.
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.  相似文献   

15.
Although functional trait variability is increasingly used in community ecology, the scale- and size-dependent aspects of trait variation are usually disregarded. Here we quantified the spatial structure of shoot height, branch length, root/shoot ratio and leaf number in a macrophyte species Potamogeton maackianus, and then disentangled the environmental and ontogenetic effects on these traits. Using a hierarchical nested design, we measured the four traits from 681 individuals across five ecological scales: lake, transect, depth stratus, quadrat and individual. A notable high trait variation (coefficient variation: 48–112%) was observed within species. These traits differed in the spatial structure, depending on environmental factors of different scales. Shoot height and branch length were most responsive to lake, transect and depth stratus scales, while root/shoot ratio and leaf number to quadrat and individual scales. The trait variations caused by environment are nearly three times higher than that caused by ontogeny, with ontogenetic variance ranging from 21% (leaf number) to 33% (branch length) of total variance. Remarkably, these traits showed non-negligible ontogenetic variation (0–60%) in each ecological scale, and significant shifts in allometric trajectories at lake and depth stratus scales. Our results highlight that environmental filtering processes can sort individuals within species with traits values adaptive to environmental changes and ontogenetic variation of functional traits was non-negligible across the five ecological scales.  相似文献   

16.
In order to evaluate the constancy of amino acid composition and concentration, several randomly collected samples of genuine floral nectar from different flowers of several plant species were analysed. Although there seems to exist a rough pattern of species-specific nectar amino acid composition, amino acid concentration varied strongly from sample to sample. Apart from the lack of constancy in concentration of floral amino acids, our samples do not show amino acid concentration values as assigned typical for the pertinent pollination mode by other workers.  相似文献   

17.
Understanding nucleotide variation in natural populations has been a subject of great interest for decades. However, many taxonomic groups, especially those with atypical life history attributes remain unstudied, and Drosophila is the only arthropod genus for which DNA polymorphism data are presently abundant. As a result of the recent release of the complete genome sequence and a wide variety of new genomic resources, the Daphnia system is quickly becoming a promising new avenue for expanding our knowledge of nucleotide variation in natural populations. Here, we examine nucleotide variation in six protein-coding loci for Daphnia pulex and its congeners with particular emphasis on D. pulicaria, the closest extant relative of D. pulex. Levels of synonymous intraspecific variation, πs, averaged 0.0136 for species in the Daphnia genus, and are slightly lower than most prior estimates in invertebrates. Tests of neutrality indicated that segregating variation conforms to neutral model expectations for the loci that we examined in most species, while Ka/Ks ratios revealed strong purifying selection. Using a full maximum-likelihood coalescent-based method, the ratio of the recombination rate to the mutation rate (c/u), averaged 0.5255 for species of the Daphnia genus. Lastly, a divergence population-genetics approach was used to investigate gene flow and divergence between D. pulex and D. pulicaria.  相似文献   

18.
19.
In the laboratory, we documented large variation in the morphology, toxicity, and maximum population growth rates for 32 Microcystis aeruginosa strains isolated from 12 lakes. Growth rates and mean colony sizes varied significantly across strains and were positively correlated. However, growth rates were unrelated to toxin production.  相似文献   

20.
The capacity of restored plant populations to adapt to new environmental challenges depends on within‐population genetic variation. We examined how much genetic and environmentally based variation for fitness‐associated traits exists within populations of two native grasses commonly used for restoration in California. We were also interested in understanding how phenotypic expression of genetic variation for these traits varies with growth environment. Thirty maternal families of Elymus glaucus (Blue wild rye) and Nassella pulchra (Purple needlegrass) were sampled from both coastal and interior populations and reciprocally transplanted into three replicated common gardens with and without interspecific competition at each site. Reproductive output of families differed both among years and with competition treatments. Phenotypic expression of genetic variation in culm production differed among populations and was very low when families were grown with interspecific competition. Without interspecific competition, the degree of genetic determination peaked in year two in both species (8.4 and 15.1% in E. glaucus and N. pulchra, respectively). Significant genetic differences in reproduction and phenotypic plasticity were found among N. pulchra subpopulations sampled less than 3 km apart, further highlighting the importance of thoroughly sampling available genetic variation in populations used for restoration. The variable and generally low expression of genetic variation indicates that rates of adaptation in restored populations of these native grasses may vary temporally and may be especially slow within competitive environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号