首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiconductor nano-material was prepared, and its degradation efficiency of zearalenone (ZEN) was studied. The photocatalytic material graphitic carbon nitride (g-C3N4) was synthesized by the traditional method of hot cracking. Its structure was characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation experiment showed that under the irradiation of ultraviolet (UV) lamp (254 nm, including 185 nm), g-C3N4 could induce photocatalytic effect, which provided a new method for the degradation of ZEN in real powder samples. The experimental conditions of photocatalytic degradation of the primary reference material of ZEN and ZEN in real powder samples were explored. And the degradation products of ZEN were analyzed after high-performance liquid chromatography–mass spectrometry (HPLC–MS). Under each optimal experimental conditions, the degradation rate on primary reference material of ZEN and ZEN in real powder samples was 96.0% and 50.0%, respectively. The results in this work provide a theoretical reference and practical basis for the photocatalytic degradation of mycotoxin in real powder samples by g-C3N4.  相似文献   

2.
Green plants use solar energy efficiently in nature. Simulating the exquisite structure of a natural photosynthesis system may open a new approach for the construction of desirable photocatalysts with high light harvesting efficiency and performance. Herein, inspired by the excellent light utilization of “leaf mosaic” in plants, a novel vine‐like g‐C3N4 (V‐CN) is synthesized for the first time by copolymerizing urea with dicyandiamide‐formaldehyde (DF) resin. The as‐prepared V‐CN exhibits ultrahigh photocatalytic hydrogen production of 13.6 mmol g?1 h?1 under visible light and an apparent quantum yield of 12.7% at 420 nm, which is ≈38 times higher than that of traditional g‐C3N4, representing one of the highest‐activity g‐C3N4‐based photocatalysts. This super photocatalytic performance is derived from the unique leaf mosaic structure of V‐CN, which effectively improves its light utilization and affords a larger specific surface area. In addition, the introduction of DF resin further optimizes the energy band of V‐CN, extends its light absorption, and improves its crystallinity and interfacial charge transport, resulting in high performance. It is an easy and green strategy for the preparation of broad‐spectrum, high‐performance g‐C3N4, which presents significant advancement for the design of other nanophotocatalysts by simulating the fine structure of natural photosynthesis.  相似文献   

3.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

4.
Cu (II) and Ag(I) together with TiO2 powder were deposited on conducting support substrates to enhance the photocatalytic ability. The catalytic efficiency was tested by monitoring the photocatalytic degradation and detriment of methylene blue (MB) and bovine serum albumin (BSA). The conformational change of BSA induced by catalysts was also observed by circular dichroism spectroscopy.The antibacterial activities were studied by Escherichia coli. Both MB and BSA could be degraded more efficiently than pure TiO2. After treatment with catalyst, the morphology of cells became twisted and rougher. Regular wrinkles were damaged and groove-like rift appeared on the surface. The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Changes of the spectral profile of E. coli were observed, which suggested the damages of surface groups on the cell membrane.  相似文献   

5.
The primary amine groups on the heptazine‐based polymer melon, also known as graphitic carbon nitride (g‐C3N4), can be replaced by urea groups using a two‐step postsynthetic functionalization. Under simulated sunlight and optimum Pt loading, this urea‐functionalized carbon nitride has one of the highest activities among organic and polymeric photocatalysts for hydrogen evolution with methanol as sacrificial donor, reaching an apparent quantum efficiency of 18% and nearly 30 times the hydrogen evolution rate compared to the nonfunctionalized counterpart. In the absence of Pt, the urea‐derivatized material evolves hydrogen at a rate over four times that of the nonfunctionalized one. Since “defects” are conventionally accepted to be the active sites in graphitic carbon nitride for photocatalysis, the work here is a demonstrated example of “defect engineering,” where the catalytically relevant defect is inserted rationally for improving the intrinsic, rather than extrinsic, photocatalytic performance. Furthermore, the work provides a retrodictive explanation for the general observation that g‐C3N4 prepared from urea performs better than those prepared from dicyandiamide and melamine. In‐depth analyses of the spent photocatalysts and computational modeling suggest that inserting the urea group causes a metal‐support interaction with the Pt cocatalyst, thus facilitating interfacial charge transfer to the hydrogen evolving centers.  相似文献   

6.
Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3N4/nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3N4 and g-C3N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3N4/nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3N4/nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3N4/nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.  相似文献   

7.
Methylene blue (MB), a common toxic dye, is largely discharged from dyeing processes for acrylic, nylon, silk, and woolen fabrics in textile industries. While application of conventional removal processes like chemical precipitation, ion exchange, commercial activated carbon adsorption, etc often become cost-prohibitive, the adsorption of MB by abundantly available green pea peel (GPP: Pisum sativum) derived and acid-treated carbon (GPP-AC) has proved to be a cost-attractive option in the present study. The physicochemical and morphological characteristics of GPP-AC were examined with the help of XRD, BET surface area, SEM, and Fourier transform infrared spectrophotometry ((FT-IR) analysis. The influences of such adsorption parameters as initial dye concentration, pH, contact time, adsorbent dosage, agitation speed, particle size, and temperature were evaluated and optimized. The equilibrium contact time for maximum adsorption of MB on to GPPAC was found to be 7 h. The equilibrium data of the adsorption process were modeled by using the Langmuir, Freundlich, Temkin, and Dubinin-Raduskevich (D-R) isotherms. However, the adsorption equilibrium data were best described by the Langmuir Isotherm model, with a maximum adsorption capacity of 163.94 mg MB/g GPPAC at 30°C.  相似文献   

8.
This review summarizes the recent developments of thin film polymer coated photocatalysis with TiO2 mediating the discoloration/degradation of the azo-dye Orange II under light irradiation. The stable anchoring of TiO2 on non-heat resistant but chemically inert flexible polymer films is described. The nature of the polymer films used, the pretreatment of the film for the TiO2 loading and the testing of the photocatalytic activity are addressed for different inert polymer films not having the conventional functional surface groups to bind TiO2. The discoloration of Orange II in the presence of LDPE/TiO2 is completed in about 10 h. This is a significantly longer times than the one observed for the same process when Tedlar/TiO2 and Parylene/TiO2 were used in the dye discoloration process. This points out to specific effects particular to each the polymer support used to graft the photoactive TiO2 particles.  相似文献   

9.
The composite TiO2/Mo-TiO2 were prepared by a modified sol-gel method. The prepared catalysts were characterized by X-ray diffraction, BET analysis, SEM, X-ray photoelectron spectroscopy, and UV–vis diffused reflectance spectroscopy techniques. The structural characterization results demonstrated that Mo was successfully doped into the TiO2 lattice and caused slight changes in the physiochemical properties. The UV–vis DRS showed a red shift of the adsorption edge to the visible region. The photocatalytic decomposition efficiencies of the catalysts were examined with toluene as a typical VOC in a continuous flow reactor. The photocatalytic activity of the n-n heterogeneous TiO2/Mo-TiO2 was greater than that of pure TiO2 and Mo-TiO2, and the catalyst containing a Mo/Ti mole ratio of 2.5% exhibited optimum photocatalytic properties. In general, a relative humidity of 35%, a higher oxygen content, a lower initial toluene concentration, and a higher UV intensity were beneficial for toluene decomposition.  相似文献   

10.
Graphitic carbon nitride (g-C3N4) has gained great interest as a visible-light-activated photocatalyst. As an emerging nanomaterial for environmental applications, its competitive performance and environmentally responsible synthesis are critical to its success. A powerful tool for informing material development with reduced environmental impacts is life cycle assessment (LCA). In this study, LCA is used to evaluate the environmental impacts of g-C3N4 nanosheet produced via eight existing synthesis routes. The results reveal electricity as the main contributor to the cumulative impacts of all eight g-C3N4 syntheses. There are opportunities to reduce energy demand, and consequently the synthesis impacts, by revising synthesis procedures (i.e., removing or reducing time of use of a piece of equipment), optimizing the calcination step (i.e., faster heating rate, lower heating time, lower temperature), and moving to cleaner electricity sources. Further, benchmarking the environmental impacts of g-C3N4 nanosheets to a well-established metal-based photocatalyst, titanium dioxide nanoparticles (nano-TiO2), reveals mixed comparative results. The synthesis method substantially influences the comparative impacts. Considering use-phase benefits of activating g-C3N4 with visible wavelength light emitting diodes compared to ultraviolet (UV) wavelengths for nano-TiO2 results in a 52% energy demand reduction (in kWh). Performance of g-C3N4 compared to a high-energy disinfection approach (i.e., conventional UV) reveals an inability to meet drinking water disinfection standards for viral load reduction (4-log reduction) with any mass of g-C3N4, given its high embodied resource footprint. This work establishes a foundation to inform and direct g-C3N4 nanosheets toward improved sustainable development.  相似文献   

11.
Ag-loaded TiO2 (Ag/TiO2) nanocomposites were prepared by microwave-assisted chemical reduction method using tetrabutyl titanate as the Ti source. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherms, UV–vis absorption spectrum, X-ray photoelectron spectrum, photoluminescence spectrum, and Raman scattering spectrum, respectively. Results revealed that Ag nanoparticles (NPs) were successfully deposited on TiO2 by reduction of Ag+, and the visible light absorption and Raman scattering of TiO2 were enhanced by Ag NPs based on its surface plasmon resonance effect. Besides, Ag NPs could also effectively restrain the recombination of photogenerated electrons and holes with a longer luminescence life time. In addition, photocatalytic reduction of CO2 with H2O on the composites was conducted to obtain methanol. Experimental results indicated that Ag-loaded TiO2 had better photocatalytic activity than pure TiO2 due to the synergistic effect between UV light excitation and surface plasmon resonance enhancement, and 2.5 % Ag/TiO2 exhibited the best activity; the corresponding energy efficiency was about 0.5 % and methanol yield was 405.2 μmol/g-cat, which was 9.4 times higher than that of pure TiO2. Additionally, an excitation enhancement synergistic mechanism was proposed to explain the experimental results of photocatalytic reduction of CO2 under different reaction conditions.  相似文献   

12.
By the introduction of Ag+, the molecular imprinting technology and photocatalysis technology were associated with each other and the Ag+-imprinted biosorbent (Ag-IB) was prepared. Ag-IB could first adsorb Ag+ and then degraded Methyl Orange (MO). Firstly the influences of the ionic strength and pH value in solution on adsorption capacity for Ag+ were studied, and then the effects of Ag+ adsorption capacity on degradability for MO were investigated. The maximal degradation ratio of MO reached over 93% at Ag+ adsorption capacity of 78.0 mg/g after 5.0 h. In contrast to MO, Methylene Blue (MB) and Sunset Yellow (SY) were studied and the degradation ratios could be about 70% and 98% at Ag+ adsorption capacity of 36.9 mg/g, respectively. And XPS analysis showed that Ag+ was reduced to Ag on Ag-IB surface. Furthermore, the mechanism for photocatalytic degradation of MO dye was primarily researched.  相似文献   

13.
In this study, highly photoluminescent and photocatalytic Fe2O3@carbon quantum dots/graphene oxide nanostructures were synthesized using ball milling‐assisted hydrothermal synthesis with hard pistachio shells. Different analyses, such as X‐ray diffraction, energy dispersive X‐ray spectroscopy, and Fourier transform infrared spectroscopy were used to study the product structure. Scanning electron microscopy and transmission electron microscopy images were used to study product size and morphology. Optical properties of the as‐synthesized nanomaterials were investigated using ultraviolet–visible light and photoluminescence analyses. To increase photoluminescence intensity, ethylene diamine tetraacetic acid, polyethylene glycol, polyvinylpyrrolidone, and acetylacetonate anions were used to modify the product surface. Thermal stability of the product was studied using thermal gravimetric analysis. Finally, photocatalytic activity and surface adsorption of the product were investigated; the produce was found to be highly photoluminescent with high photocatalytic and surface activities.  相似文献   

14.
A triplicate volcanic rock matrix–Bacillus thuringiensis–laccase WlacD (VRMs–Bt–WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn)2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn)2–WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9(34)-orthogonal test, Plackett–Burman test, steepest ascent method, and Box–Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L?1, which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs–Bt–WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs–Bt–WlacD toward an initial concentration of 500 mg L?1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g–100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs–Bt–WlacD and have the potential for large-scale or continuous operations.  相似文献   

15.
The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB.  相似文献   

16.

Background

Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized.

Methods

A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.

Results

TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γmin) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m) and γmin (21.1 ± 0.4 mN/m). Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.

Conclusion

TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.  相似文献   

17.
Gas adsorption and separation performance of COF-108 framework impregnated by C60 clusters were simulated. The adsorption properties of pure CO2, the mixtures of CO2/CH4, CO2/N2 and N2/O2 were investigated. The simulated results of the adsorption isotherms, the adsorption quantity, the density fields, the isosteric heats and the selectivity in COF-108s were obtained. It is shown that the impregnation of C60 can enhance the adsorption capacity of CO2, N2 and O2, and the selectivity of CO2/CH4, CO2/N2 and N2/O2 in COF-108. The impregnation of C60 can increase the surface area COF-108 but decrease its free volume and the pore diameter. At low adsorption pressures, the monolayer surface adsorption is dominant. With the increase in adsorption pressure, the dominant factor is changed into the free volume of COF-108 by the multilayer adsorption. The impregnation of C60 plays different roles for the polar or non-polar gases at different pressures.  相似文献   

18.
Despite the sizeable and growing body of research on polymers of intrinsic microporosity (PIMs), a greater understanding of the relationship between the monomer, polymer–polymer and polymer–gas interaction is of significant interest. Methane (CH4), carbon dioxide (CO2), oxygen (O2) and nitrogen (N2) adsorption isotherms at 20°C and up to 20 bar obtained from grand canonical Monte Carlo simulations are presented for PIM-1, PIM-1c, PIM-1n and PIM-1f. The new proposed structure, PIM-1f, is presented and characterised by geometric accessible surface area, pore size distribution, radial distribution function, X-ray scattering and gas adsorption isotherms. PIM-1f increased the geometric surface area when compared with PIM-1; however, the higher system density in combination with the lack of strong adsorption sites yielded the least effective adsorbent for the gases analysed in this study. The gas solubility and ideal solubility selectivity values are also presented and compared with available experimental data for all gases and several gas mixtures illustrating that PIM-1c is the most effective functionality studied for adsorbing these four gases. The conclusions made here are projected to facilitate the design of a material that combines the higher surface area of PIM-1f with the high adsorption capacity of PIM-1c, which will improve the performance of future PIMs.  相似文献   

19.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   

20.
In this study, we synthesize nanostructured nickel oxide (NiO) and doped cobalt (Co) by combining nickel(II) chloride hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as initial substances. We analyzed the characteristics of the product nanostructures, including their structure, optical properties, and magnetic properties, using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet absorption spectroscopy (UV–Vis), Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometers (VSM). The NiO nanoparticles doped with Co showed photocatalytic activity in degrading methylene blue (MB) dye in aqueous solutions. We calculated the degradation efficiencies by analyzing the UV–Vis absorption spectra at the dye's absorption wavelength of 664 nm. It was observed that the NiO-doped Co nanoparticles facilitated enhanced recombination and migration of active elements, which led to more effective degradation of organic dyes during photocatalysis. We also assessed the electrochemical properties of the materials using cyclic voltammetry (CV) and impedance spectroscopy in a 1 mol% NaOH solution. The NiO-modified electrode exhibited poor voltammogram performance due to insufficient contact between nanoparticles and the electrolyte solution. In contrast, the uncapped NiO's oxidation and reduction cyclic voltammograms displayed redox peaks at 0.36 and 0.30 V, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号