首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.  相似文献   

2.
c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.  相似文献   

3.
4.
Dai R  Li J  Fu J  Chen Y  Yu L  Zhao X  Qian Y  Zhang H  Chen H  Ren Y  Su B  Luo T  Zhu J  Wang H 《The Journal of biological chemistry》2012,287(18):14586-14597
c-Met, the tyrosine-kinase receptor for hepatocyte growth factor, plays a critical role in the tumorigenesis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains incompletely understood. The mature c-Met protein p190Met(αβ) (consists of a α subunit and a β subunit) is processed from pro-Met. Here we show that pro-Met is processed into p190Met(NC) by sarco/endoplasmic reticulum calcium-ATPase (SERCA) inhibitor thapsigargin. p190Met(NC) compensates for the degradation of p190Met(αβ) and protects human HCC cells from apoptosis mediated by endoplasmic reticulum (ER) stress. In comparison with p190Met(αβ), p190Met(NC) is not cleaved and is expressed as a single-chain polypeptide. Thapsigargin-initiated p190Met(NC) expression depends on the disturbance of ER calcium homeostasis. Once induced, p190Met(NC) is activated independent of hepatocyte growth factor engagement. p190Met(NC) contributes to sustained high basal activation of c-Met downstream pathways during ER calcium disturbance-mediated ER stress. Both p38 MAPK-promoted glucose-regulated protein 78 (GRP78) expression and sustained high basal activation of PI3K/Akt and MEK/ERK are involved in the cytoprotective function of p190Met(NC). Importantly, the expression of p190Met(NC) is detected in some HCC cases. Taken together, these data provide a potential mechanism to explain how c-Met promotes HCC cells survival in response to ER stress. We propose that context-specific processing of c-Met protein is implicated in HCC progression in stressful microenvironments.  相似文献   

5.
Hepatocellular carcinoma (HCC) is among the most lethal cancers. Mounting studies highlighted the essential role of the HGF/c-MET axis in driving HCC tumor progression. Therefore, c-Met is a potential therapeutic target for HCC. However, several concerns remain unresolved in c-Met targeting. First, the status of active c-Met in HCC must be screened to determine patients suitable for therapy. Second, resistance and side effects have been observed frequently when using conventional c-Met inhibitors. Thus, a preclinical system for screening the status of c-Met signaling and identifying efficient and safe anti-HCC agents is urgently required. In this study, immunohistochemical staining of phosphorylated c-Met (Tyr1234) on tissue sections indicated that HCCs with positive c-Met signaling accounted for approximately 46% in 26 cases. Second, many patient-derived HCC cell lines were established and characterized according to motility and c-Met signaling status. Moreover, LZ8, a medicinal peptide purified from the herb Lingzhi, featuring immunomodulatory and anticancer properties, was capable of suppressing cell migration and slightly reducing the survival rate of both c-Met positive and negative HCCs, HCC372, and HCC329, respectively. LZ8 also suppressed the intrahepatic metastasis of HCC329 in SCID mice. On the molecular level, LZ8 suppressed the expression of c-Met and phosphorylation of c-Met, ERK and AKT in HCC372, and suppressed the phosphorylation of JNK, ERK, and AKT in HCC329. According to receptor array screening, the major receptor tyrosine kinase activated in HCC329 was found to be the epidermal growth factor receptor (EGFR). Moreover, tyrosine-phosphorylated EGFR (the active EGFR) was greatly suppressed in HCC329 by LZ8 treatment. In addition, LZ8 blocked HGF-induced cell migration and c-Met-dependent signaling in HepG2. In summary, we designed a preclinical trial using LZ8 to prevent the tumor progression of patient-derived HCCs with c-Met-positive or -negative signaling.  相似文献   

6.
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail.  相似文献   

7.
Backgroundc-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.MethodsWe utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.ResultsWe have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone.Conclusionc-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.  相似文献   

8.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

9.
Clinical studies with prostate cancer tissue indicate that alterations in androgen receptor (AR) or c-Met overexpression are associated with androgen-independent progression. We investigated the interaction between AR and c-Met signaling in human prostate cancer cells. Androgen withdrawal or AR-specific small interfering RNA significantly reduced the growth rate while each maneuver induced the expression of c-Met. Knockdown of both AR and c-Met expression markedly inhibited the cell growth. Furthermore, microarray analysis indicated that the activation of c-Met down-regulated the expression of DNA repair-related genes including 8-oxoguanine DNA glycosylase. Exogenous hepatocyte growth factor also induced the production of intracellular reactive oxygen species and resulted in the accumulation of DNA damages. These results suggested that the activation of c-Met signaling may lead to induction of spontaneous mutations or genomic instability, which may lead to the progression of androgen-independent state. Thus, c-Met signaling is utilized for survival and growth under the androgen-depleted condition.  相似文献   

10.
Osteosarcoma is a common malignant bone tumor. Cisplatin (CDDP) achieves a high response rate in osteosarcoma. However, osteosarcoma usually exhibits cisplatin resistance. Many members of receptor tyrosine kinases (RTKs)(1) have been demonstrated to be overexpressed and constitutively activated in various tumors including osteosarcoma, resulting in malignant progression and insensitivity to chemotherapy. Hepatocyte growth factor receptor (HGFR/c-Met) also appears overexpressed and activated in osteosarcoma cells. Nevertheless, which role of c-Met activation in cisplatin efficacy against osteosarcoma cells remains still elusive. This study found that inhibition of c-Met activity by PHA-665752 or blockade of the interaction of autocrined HGF with c-Met with neutralizing anti-HGF antibody promoted cisplatin efficacy in osteosarcoma cells, while addition of recombinant human HGF (rh-HGF) counteracts cisplatin cytotoxicity. Specifically, we demonstrated that inhibition of c-Met activity led to suppression of the PI3K-Akt pathway, thus enhancing cisplatin chemosensitivity. Our study clearly suggests that inhibition of c-Met activity can effectively sensitize osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling.  相似文献   

11.
12.
The receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), modulate signaling cascades implicated in cellular proliferation, survival, migration, invasion, and angiogenesis. Therefore, dysregulation of HGF/c-Met signaling can compromise the cellular capacity to moderate these activities and can lead to tumorigenesis, metastasis, and therapeutic resistance in various human malignancies. To facilitate studies investigating HGF/c-Met receptor coupling or c-Met signaling events in real time and in living cells and animals, here we describe a genetically engineered reporter where bioluminescence can be used as a surrogate for c-Met tyrosine kinase activity. c-Met kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to the activation or inhibition of the HGF/c-Met signaling pathway. Treatment of tumor-bearing animals with a c-Met inhibitor and the HGF neutralizing antibody stimulated the reporter’s bioluminescence activity in a dose-dependent manner and led to a regression of U-87 MG tumor xenografts. Results obtained from these studies provide unique insights into the pharmacokinetics and pharmacodynamics of agents that modulate c-Met activity and validate c-Met as a target for human glioblastoma therapy.  相似文献   

13.
Hepatocyte growth factor/scatter factor (HGF/SF) receptor c-Met is implicated in growth, invasion and metastasis of many tumors. Tumor cells harboring MET gene amplification are initially sensitive to c-Met tyrosine kinase inhibitors (TKI), but escape from long-term treatment has not been investigated. C-Met is a client of heat shock protein 90 (Hsp90) and is destabilized by Hsp90 inhibitors, suggesting that these drugs may inhibit tumors driven by MET amplification, although tumor escape under these conditions also has not been explored. Here, we evaluated the initial inhibitory effects of, and the likelihood of escape from, the Hsp90 inhibitor 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and the c-Met TKI SU11274, using two cell lines harboring MET gene amplification. 17-AAG inhibited cell growth in both cell lines and induced substantial apoptosis, whereas SU11274 was only growth inhibitory in one cell line. In both cell lines, c-Met-dependent Akt, Erk and/or STAT3 signaling, as well as activation of the EGFR family, resumed shortly after treatment with c-Met TKI despite sustained c-Met inhibition. PKC δ upregulation may participate in reactivation of c-Met downstream signaling in both cell lines. In contrast to c-Met TKI, 17-AAG destabilized c-Met protein and durably blocked reactivation of downstream signaling pathways and EGFR family members. Our data demonstrate that downstream signaling in tumor cells over-expressing c-Met is not stably suppressed by c-Met TKI, even though c-Met remains fully inhibited. In contrast, Hsp90 inhibitors provide long-lasting suppression of c-Met-dependent signaling, and these drugs should be further evaluated in tumors driven by MET gene amplification.  相似文献   

14.
T cell dependent humoral immune responses are initiated by the activation of naive B cells in the T cell areas of the secondary lymphoid tissues. This primary B cell activation leads to migration of germinal center (GC) cell precursors into B cell follicles where they engage follicular dendritic cells (FDC) and T cells, and differentiate into memory B cells or plasma cells. Both B cell homing to the GC and interaction with FDC critically depend on integrin-mediated adhesion. We have recently indentified the c-met-encoded receptor tyrosine kinase and its ligand, the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF), as a novel paracrine signalling pathway regulating B cell adhesion (van der Voort et al., 1997, J. Exp. Med. 185, 2121–2131). The c-Met protein is expressed on B cells localized in the dark zone of the GC (centroblasts) and is induced by CD40 plus BCR ligation. Stimulation of c-Met with HGF/SF. which is produced at high levels by tonsillar stromal cells and FDC, leads to receptor phosphorylation and to enhanced integrin-mediated adhesion of B cells to both VCAM-l and fibronectin. Interestingly, these responses to HGF/SF are promoted by heparan-sulfate proteoglycan forms of CD44 (CD44-HS). Like c-Met, CD44-HS is induced on B cells by CD40 ligation. It efficiently binds HGF/SF and strongly promotes signalling through c-Met. We conclude that integrin regulation during antigen specific B cell differentiation involves cross-talk between the HGF/SF-c-Met pathway and CD44-HS.  相似文献   

15.
The present study evaluated whether protein kinase C (PKC) activation was involved in the lymphocytosis promoting properties of pertussis toxin (Ptx). The exposure of mouse lymphocytes to phorbol esters (as a means to selectively activate PKC) caused a depression in their subsequent capacity to localize into lymph nodes and Peyer's patches in vivo. This pattern of inhibition was quite similar to that observed with lymphocytes treated with Ptx. The mechanisms responsible for the observed decreases in localization to lymphoid organs caused by these two agents, however, appeared to be distinct. Exposure of lymphocytes to PMA was followed by a time and dosage-dependent decrease in the surface density of MEL-14 defined homing receptors. Ptx-treated lymphocytes retained normal density of this homing receptor. Consequently, PMA-treated lymphocytes lost their capacity to bind to high-endothelial venules in in vitro lymph node binding assays while Ptx-treated cells retained normal high-endothelial venule binding potential. We conclude from this study that: 1) the activation of PKC in lymphocytes by PMA can alter their recirculation properties via mechanisms that diminish their expression of surface receptors which support extravasation into lymph node and mucosal lymphoid tissues, and 2) even though Ptx has been reported to elevate the rate of inositol phosphate turnover in lymphocytes, the loss of extravasation potential of Ptx-treated lymphocytes is not mediated via the modification of surface homing receptors as observed in cells exposed to the known PKC activator, PMA.  相似文献   

16.
3,3′-Diindolylmethane (DIM), an indole derivative from vegetables of the Brassica genus, has antiproliferative activity in breast cancer cells. Part of this activity is thought to be due to DIM inhibition of Akt signaling, but an upstream mechanism of DIM-induced Akt inhibition has not been described. The goals of this study were to investigate the kinetics of inhibition of Akt by physiologically relevant concentrations of DIM and to identify an upstream factor that mediates this effect. Here we report that DIM (5–25 μM) inhibited Akt activation from 30 min to 24 h in tumorigenic MDA-MB-231 cells but did not inhibit Akt activation in non-tumorigenic preneoplastic MCF10AT cells. DIM inhibited hepatocyte growth factor (HGF)-induced Akt activation by up to 46%, cell migration by 66% and cell proliferation by up to 54%, but did not inhibit induction of Akt by epidermal growth factor or insulin-like growth factor-1. DIM decreased phosphorylation of the HGF receptor, c-Met, at tyrosines 1234 and 1235, indicating decreased activation of the receptor. This decrease was reversed by pretreatment with inhibitors of p38 or calcineurin. Our results demonstrate the important role of HGF and c-Met in DIM's anti-proliferative effect on breast cancer cells and suggest that DIM could have preventive or clinical value as an inhibitor of c-Met signaling.  相似文献   

17.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

18.
Aberrant activation of the Hedgehog (Hh) signaling pathway has been reported in various cancer types including hepatocellular carcinoma (HCC). As a key effector of this signaling, Gli2 plays a crucial role in carcinogenesis, including the activation of genes encoding apoptosis inhibitors and cell-cycle regulators. In this study, we examined the role of Gli2 proliferation and survival of HCC cells. First, the expression levels of Hh pathway components were detected in a subset of HCC cell lines. To establish the role of Gli2 in maintaining the tumorigenic properties of HCC cells, we developed small hairpin RNA (shRNA) targeting Gli2 and transfected it into SMMC-7721 cell, which was selected with high level of Hh signaling expression. Next, effects of Gli2 gene silencing, on cell proliferation and on the expression of cell cycle-related proteins were evaluated, then, whether down-regulation of Gli2 renders HCC cell susceptible to TRAIL was examined in vitro. Knockdown of Gli2 inhibited cell proliferation and induced G1 phase arrest of cell cycle in SMMC-7721 cell through down-regulation of cyclin D1, cyclinE2, and up-regulation of p21-WAF1. Also, Gli2 gene siliencing sensitized SMMC-7721 cell to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reducing the expression of the long and short isoform of c-FLIP and Bcl-2, and then augmented the activation of initiator caspases-8/-9 and effector caspases-3, which induces PARP cleavage. In conclusion, our data suggest that Gli2 plays a predominant role in the proliferation and apoptosis resistance of HCC cells, and that knockdown of Gli2 may be a novel anticancer strategy for the treatment of HCC.  相似文献   

19.
Hepatocyte growth factor (HGF)/scatter factor is a multifunctional cytokine that induces mitogenesis, motility, and morphogenesis in epithelial, endothelial, and neuronal cells. The receptor for HGF/scatter factor was identified as c-Met tyrosine kinase, and activation of the receptor induces multiple signaling cascades. To gain further insight into c-Met-mediated multiple events at a molecular level, we isolated several signaling molecules including a novel binding partner of c-Met, SH2 domain-containing inositol 5-phosphatase 1 (SHIP-1). Western blot analysis revealed that SHIP-1 is expressed in the epithelial cell line, Madin-Darby canine kidney (MDCK) cells. SHIP-1 binds at phosphotyrosine 1356 at the multifunctional docking site. Because a number of signaling molecules such as Grb2, phosphatidylinositol 3-kinase, and Gab1 bind to the multifunctional docking site, we further performed an in vitro competition study using glutathione S-transferase- or His-tagged signaling molecules with c-Met tyrosine kinase. Our binding study revealed that SHIP-1, Grb2, and Gab1 bound preferentially over phosphatidylinositol 3-kinase. Surprisingly, MDCK cells that overexpress SHIP-1 demonstrated branching tubulogenesis within 2 days after HGF treatment, whereas wild-type MDCK cells showed tubulogenesis only after 6 days following treatment without altering cell scattering or cell growth potency. Furthermore, overexpression of a mutant SHIP-1 lacking catalytic activity impaired HGF-mediated branching tubulogenesis.  相似文献   

20.
A high level of serum alpha fetoprotein (AFP) is positively associated with human hepatocellular carcinoma (HCC) carcinogenesis and metastasis; however, the function of AFP in HCC metastasis is unknown. This study has explored the effects of AFP on regulating metastatic and invasive capacity of human HCC cells. Forty‐seven clinical patients' liver samples were collected and diagnosed; HCC cells line, Bel 7402 cells (AFP‐producing) and liver cancer cell line cells (non‐AFP‐producing) were selected to analyse the role of AFP in the metastasis of HCC cells. The results indicated that high serum concentration of AFP was positively correlated with HCC intrahepatic, lymph nodes and lung metastasis. Repressed expression of AFP significantly inhibited the capability of migration and invasion of Bel 7402 cells, expression of keratin 19 (K19), epithelial cell adhesion molecule (EpCAM), matrix metalloproteinase 2/9 (MMP2/9) and CXC chemokine receptor 4 (CXCR4) were also down‐regulated in Bel 7402 cells; migration and invasion, expression of K19, EpCAM, MMP2/9 and CXCR4 were significantly enhanced when HLE cells were transfected with AFP‐expressed vector. The results demonstrated that AFP plays a critical role in promoting metastasis of HCC; AFP promoted HCC cell invasion and metastasis via up‐regulating expression of metastasis‐related proteins. Thus, AFP may be used as a novel therapeutic target for treating HCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号