首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.  相似文献   

2.
刘城  步世忠 《生命的化学》2020,40(2):173-179
在真核生物中,细胞可以通过自噬(autophagy)和外泌体(exosome)的分泌两种方式来对外界刺激做出应答从而维持细胞内稳态。自噬是溶酶体依赖性细胞组分降解的过程,其能被氧化应激、饥饿或蛋白质聚集等因素诱导发生。除了自噬途径,细胞还可以通过分泌外泌体来调节细胞的生命活动,新的研究表明自噬与外泌体发生有同样的分子机理。本文综述了自噬与外泌体发生的过程以及两者之间的联系。  相似文献   

3.
外泌体(exsomes)是一类具有生物活性的双层脂质组成的小囊泡,可携带不同类型的信息物质与受体细胞结合,通过信息传递与物质交换,促发受体细胞的表型发生变化。本文总结了在睾丸微环境中,外泌体通过调节细胞因子促进睾丸微环境中细胞增殖、调节细胞免疫维持睾丸免疫环境、调节氧化应激修复受体细胞功能、调节细胞自噬改善生精能力、调节细胞凋亡改善精子发生、调节细胞因子影响睾酮分泌等机制维持睾丸微环境稳态,并对外泌体在男科相关疾病预防、诊断、治疗中的作用进行归纳,外泌体在男性不育、勃起功能障碍、精索静脉曲张、性腺功能减退、前列腺癌等疾病诊疗中具备明显优势。外泌体作为一种新兴的应用物质,随着外泌体工程和提取工艺的不断优化,以及相关机制研究的不断深入,外泌体在男科疾病中的临床运用成为可能,有望成为治疗男科疾病的新手段。  相似文献   

4.
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.  相似文献   

5.
Exosomes are nanometer-sized lipid vesicles released ubiquitously by cells, which have been shown to have a normal physiological role, as well as influence the tumor microenvironment and aid metastasis. Recent studies highlight the ability of exosomes to convey tumor-suppressive and oncogenic mRNAs, microRNAs, and proteins to a receiving cell, subsequently activating downstream signaling pathways and influencing cellular phenotype. Here, we show that radiation increases the abundance of exosomes released by glioblastoma cells and normal astrocytes. Exosomes derived from irradiated cells enhanced the migration of recipient cells, and their molecular profiling revealed an abundance of molecules related to signaling pathways important for cell migration. In particular, connective tissue growth factor (CTGF) mRNA and insulin-like growth factor binding protein 2 (IGFBP2) protein levels were elevated, and coculture of nonirradiated cells with exosomes isolated from irradiated cells increased CTGF protein expression in the recipient cells. Additionally, these exosomes enhanced the activation of neurotrophic tyrosine kinase receptor type 1 (TrkA), focal adhesion kinase, Paxillin, and proto-oncogene tyrosine-protein kinase Src (Src) in recipient cells, molecules involved in cell migration. Collectively, our data suggest that radiation influences exosome abundance, specifically alters their molecular composition, and on uptake, promotes a migratory phenotype.  相似文献   

6.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

7.
Exosome selectivity mechanisms underlying exosome–target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome‐based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC‐5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo‐transmission electron microscopy; (c) cellular uptake studies of rhodamine‐labeled exosomes in normal and cancer cells, providing to exosomes either “autologous” or “heterologous” cellular delivery environments; and (d) loading exogenous Alexa Fluor 488‐labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC‐5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising “bio‐shuttles,” being pharmacologically exploitable in the context of theranostic applications.  相似文献   

8.
Exosomes play important roles in many physiological and pathological processes. However, the exosome–cell interaction mode and the intracellular trafficking pathway of exosomes in their recipient cells remain unclear. Here, we report that exosomes derived from K562 or MT4 cells are internalized more efficiently by phagocytes than by non‐phagocytic cells. Most exosomes were observed attached to the plasma membrane of non‐phagocytic cells, while in phagocytic cells these exosomes were found to enter via phagocytosis. Specifically, they moved to phagosomes together with phagocytic polystyrene carboxylate‐modified latex beads (biospheres) and were further sorted into phagolysosomes. Moreover, exosome internalization was dependent on the actin cytoskeleton and phosphatidylinositol 3‐kinase, and could be inhibited by the knockdown of dynamin2 or overexpression of a dominant‐negative form of dynamin2. Further, antibody pretreatment assays demonstrated that tim4 but not tim1 was involved in exosomes uptake. We also found that exosomes did not enter the internalization pathway involving caveolae, macropinocytosis and clathrin‐coated vesicles. Our observation that the cellular uptake of exosomes occurs through phagocytosis has important implications for exosome–cell interactions and the exosome intracellular trafficking pathway.  相似文献   

9.
Molecular communication between cancer cells and its stromal microenvironment is a key factor for cancer progression. Alongside classic secretory pathways, it has recently been proposed that small membranous vesicles are alternative mediators of intercellular communication. Exosomes carry an effector-rich proteome with the ability to modulate various functional properties of the recipient cell. In this study, exosomes isolated from four epithelial ovarian cancer cell lines (OVCAR3, OVCAR433, OVCAR5 and SKOV3) were characterized using mass spectrometry-based proteomics. Using an optimized workflow consisting of efficient exosome solubilization and the latest generation of proteomic instrumentation, we demonstrate improved detection depth. Systematic comparison of our cancer cell line exosome proteome against public data (Exocarta) and the recently published NCI 60 proteome revealed enrichment of functional categories related to signaling biology and biomarker discovery.  相似文献   

10.
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self‐renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non‐CSCs are maintained in dynamic interconversion state by their self‐differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non‐CSCs and blocking the interconversion seems to be imperative. Exosomes are 30‐100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell‐state‐specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non‐cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non‐CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes’ role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non‐CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.  相似文献   

11.
Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.  相似文献   

12.
A rapidly growing body of experimental evidence has begun to shed light on the wide ranging molecular mechanisms which modulate intra- and inter-cellular communications. A substantial quantity of the available knowledge has only been uncovered in recent years, and we are learning that donor cells release nanovesicles, known as exosomes, which regulate the cellular behavior of recipient cells following uptake. Based on the impressive capacity of exosomes in delivering their “payload”, different therapeutic agents, are currently being tested using this delivery method for more effective therapy. This review summarizes the most recent developments in exosome bioactivities and discusses the biochemical nature of exosomes and their biogenesis. It also summarizes the use of exosomes as delivery vehicles for drugs and natural compounds to the targeted site.  相似文献   

13.
Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24?AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1?colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche.  相似文献   

14.
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12–ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.  相似文献   

15.
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo.  相似文献   

16.
外泌体是体内几乎所有细胞分泌的具有双层脂质膜结构的纳米级小囊泡。外泌体大小均匀,平均直径为40~120 nm,存在于所有体液中。外泌体曾一度被认为是细胞成熟过程中清除废弃细胞器的‘垃圾袋’。但近年研究显示:外泌体含有丰富的来源于‘供体细胞’的信号分子,如蛋白质、DNA、mRNA、miRNA以及lncRNA等。当外泌体与‘受体细胞’融合时,这些信号分子便被运送到‘受体细胞’,从而实现细胞 细胞之间的通讯,影响‘受体细胞’的生理病理过程。虽然外泌体的研究目前主要集中在癌症等疾病的预防、诊断与治疗中,但是越来越多的研究显示,外泌体在心血管系统的生理及病理过程中同样发挥着重要作用。本文将对外泌体的起源、分离与纯化方法及外泌体介导的‘细胞 细胞’之间的通讯机制进行综述,并重点论述利用基因工程技术对外泌体进行靶向运输的方法及靶向外泌体运送在心血管疾病治疗中的应用。  相似文献   

17.
Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.  相似文献   

18.
Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis.  相似文献   

19.
Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.  相似文献   

20.
Retinal neovascularization (RNV) is a common pathological feature in many kinds of fundus oculi diseases. Sometimes RNV can even lead to severe vision loss. Oxidative injury is one of the main predisposing factors for RNV occurrence and development. The specific mechanism may be closely related to the special structural tissues of the retina. Retinal astrocytes (RACs) are mesenchymal cells located in the retinal neuroepithelial layer. RACs have an intimate anatomical relationship with microvascular endothelial cells. They have a variety of functions, but little is known about the mechanisms by which RACs regulate the function of endothelial cells. The molecules secreted by RACs, such as exosomes, have recently received a lot of attention and may provide potential clues to address the RAC-mediated modulation of endothelial cells. In this study, we aimed to preliminarily explore the mechanisms of how RAC exosomes generated under oxidative stress are involved in the regulation of endothelial function. Our results showed that the apoptosis and autophagy levels in RACs were positively correlated with the oxidative stress level, and the exosomes generated from RACs under normal and oxidative stress conditions had different effects on the proliferation and migration of endothelial cells. However, the effect of RACs on endothelial cell function could be markedly reversed by the autophagy inhibitor 3-methyladenine or the exosome inhibitor GW4869. Therefore, oxidative stress can lead to increased autophagy in RACs and can further promote RACs to regulate endothelial cell function by releasing exosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号