首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water relations of leaves of Tradescantia virginiana were studied using the miniaturized pressure probe (Hüsken, E. Steudle, Zimmermann, 1978 Plant Physiol. 61, 158–163). Under well-watered conditions cell turgor pressures, P o, ranged from 2 to 8 bar in epidermal cells. In subsidiary cells P o was about 1.5 to 4.5 bar and in mesophyll cells about 2 to 3.5 bar. From the turgor pressure, relaxation induced in individual cells by changing the turgor pressure directly by means of the pressure probe, the half-time of water exchange was measured to be between 3 and 100 s for the epidermal, subsidiary, and mesophyll cells. The volumetric elastic modulus, , of individual cells was determined by changing the cell volume by a defined amount and simultaneously measuring the corresponding change in cell turgor pressure. The values for the elastic modulus for epidermal, subsidiary, and mesophyll cells are in the range of 40 to 240 bar, 30 to 200 bar, and 6 to 14 bar, respectively. Using these values, the hydraulic conductivity, L p, for the epidermal, subsidiary, and mesophyll cells is calculated from the turgor pressure relaxation process (on the basis of the thermodynamics of irreversible processes) to be between 1 and 55·10-7 cm s-1 bar-1. The data for the volumetric elastic modulus of epidermal and subsidiary cells indicate that the corresponding elastic modulus for the guard cells should be considerably lower due to the large volume changes of these cells during opening or closing. Recalculation of experimental data obtained by K. Raschke (1979, Encycl. Plant Physiol. N.S., vol. 7, pp 383–441) on epidermal strips of Vicia faba indicates that the elastic modulus of guard cells of V. faba is in the order of 40–80 bar for closed stomata. However, with increasing stomatal opening, i.e., increasing guard cell volume, decreases. Therefore, in our opinion Raschke's results would indicate a relationship between guard cell volume and which would be inverse to that for plant cells known in the literature. assumes values between 20–40 bar when the guard cell colume is soubled.  相似文献   

2.
Summary By injuring cells ofValonia ventricosa, one of two survival strategies — wound-healing and protoplast formation — is induced. The present study revealed that turgor pressure, as well as Ca2+ in bathing medium, is involved in the choice between these survival strategies. On the process of wound-healing, turgor pressure is recovered in the presence of both the wound plug, which closes the wound immediately after an injury, and the aggregation of protoplasm around the wound, which serves to protect the inflow of outer medium into the protoplasm layer and also to strengthen the wound plug. When the size of the wound is more than 150 m in diameter, the protoplasmic aggregate strengthen the wound plug incompletely and, as a result, wound-healing is unsuccessful. In this case, the ejection of vacuolar sap is repeated, due to partial restoration of turgor pressure. In each ejection, the wound plug is blown off, together with the aggregated protoplasm and, after several ejections are repeated, the cell is unable to heal the wound because of a lack of protoplasm around the wound. Continuous depression of turgor pressure, during the repeat of the unsuccessful wound-healing, induces disorganization of the protoplasm layer. Under these conditions, the centrifugal propagation of protoplasmic aggregation, followed by the protoplasts formation, takes place easily. Effects of turgor pressure and Ca2+ in the bathing medium upon the wound healing is discussed and the cytoplasmic behavior for survival of wounded cells is presented schematically.  相似文献   

3.
The changes in turgor pressure that accompany the mobilisation of sucrose and accumulation of salts by excised disks of storage-root tissue of red beet (Beta vulgaris L.) have been investigated. Disks were washed in solutions containing mannitol until all of their sucrose had disappeared and then were transferred to solutions containing 5 mol·m-3 KCl+5 mol·m-3 NaCl in addition to the mannitol. Changes in solute contents, osmotic pressure and turgor pressure (measured with a pressure probe) were followed. As sucrose disappeared from the tissue, reducing sugars were accumulated. For disks in 200 mol·m-3 mannitol, the final reducing-sugar concentration equalled the initial sucrose concentration so there was no change in osmotic pressure or turgor pressure. At lower mannitol concentrations, there was a decrease in tissue osmotic pressure which was caused by a turgor-driven leakage of solutes. At concentrations of mannitol greater than 200 mol·m-3, osmotic pressure and turgor pressure increased because reducing-sugar accumulation exceeded the initial sucrose concentration. When salts were provided they were absorbed by the tissue and reducing-sugar concentrations fell. This indicated that salts were replacing sugars in the vacuole and releasing them for metabolism. The changes in salf and sugar concentrations were not equal because there was an increase in osmotic pressure and turgor pressure. The amount of salt absorbed was not affected by the external mannitol concentration, indicating that turgor pressure did not affect this process. The implications of the results for the control of turgor pressure during the mobilisation of vacuolar sucrose are discussed.To whom correspondence should be addressed.  相似文献   

4.
Changes in cell turgor pressure have been followed in cells of Microcystis sp. transferred to culture medium containing added NaCl at osmolalities of 30–1,500 mosmol kg-1 ( 74–3,680 kPa). Upon upshock turgor decreased, due to osmotically-induced water loss from the cell. However, partial recovery of turgor was then observed in illuminated cells, with maximum turgor regain in media containing 30–500 mosmol kg-1 NaCl. The lightdependent recovery of turgor pressure was completed within 60 min, with no evidence of further changes in cell turgor up to 24 h. This is the first direct evidence that turgor regulation may occur in a prokaryotic organism. Short-term increases in cell K+ content were also observed upon upshock in NaCl, indicating that turgor regain may involve a turgorsensitive K+ uptake system. Estimation of internal K+ concentration in cells transferred to 250 mosmol kg-1 NaCl showed that changes in cell K+ may account for at least half of the observed turgor regain up to 60 min.  相似文献   

5.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

6.
A depolarisation of the membrane potential difference (about-170 mV) of Chara corallina is observed in response to changes in cell turgor pressure using the pressure probe technique. The depolarisation occurs in phase with the pressure pulse (0.2 s duration) and is independent of the direction of the applied pressure gradient. This latter finding is in contradiction to results predicted on the basis of electro-kinetic phenomena. Pressure induced electrical leakages were ruled out by measuring the depolarisation in response to pressure in individual segments of the internode which were electrically isolated from one another. The changes in potential were recorded by external electrodes and an internal electrode which was positioned close to the micropipette of the pressure probe inserted through one of the electrically isolated nodes. The depolarisation in response to increasing positive or negative pressure gradients in the intact node region and in the intact middle segments was comparable to that monitored in the node region containing the pressure probe. Action potentials were initiated when the pressure gradients exceeded at least 2 bar. The action potentials were elicited at random in one of the two compartments adjacent to the node regions, but were never found to be initiated in the node regions themselves. The pressure-induced action potentials are explained in terms of an electro-mechanical compression (or expansion) of a local membrane area and discussed in their relevance to the propagation of pressure signals in response to water and salt stress in higher plants.Abbreviations PD potential difference  相似文献   

7.
Summary The oomyceteSaprolegnia ferax, unlike most walled organisms, does not regulate turgor. When hyphae were subjected to water stress by the addition of sucrose or other solutes to the growth medium, turgor pressure diminished progressively; yet the hyphae continued to extend with deposition of a more plastic apical wall. Even when turgor was no longer measurable with a micropipet-based pressure probe (0.02 MPa or less, compared with 0.4 MPa in unsupplemented medium) they produced regular hyphal tubes and tips. Such turgorless hyphae extended as rapidly, or more rapidly, than normal ones, but they were wider and their tips blunter. Despite the loss of turgor, hyphae put forth branches and cysts germinated. The organization of actin microfilaments was essentially normal, and the response to cytochalasin A was similar in turgorless and standard hyphae. However, as turgor diminished the hyphae's capacity to penetrate solid media was progressively impaired; aerial hyphae were no longer produced, and zoospore formation was inhibited. The results contradict the common belief that turgor supplies the driving force for hyphal extension, tip morphogenesis, and branching. Evidently, these functions do not intrinsically require hydrostatic pressure. Turgorless hyphae are, however, crippled by their inability to exploit solid media.Abbreviations PEG-300 polyethylene glycol-300 - Rh-Phal rhodamine phalloidin - F-actin filamentous actin - DMSO dimethyl sulfoxide - PYG peptone, yeast extract, glucose - MPa megapascals  相似文献   

8.
G. O. Kirst  M. A. Bisson 《Planta》1982,155(4):287-295
Ionic responses to alteration in external and internal pH were examined in an organism from a marine-like environment. Vacuolar pH (pHv) is about 4.9–5.1, constant at external pH (pHo) 5–8, while cytoplasmic pH (pHc) increases from 7.3 to 7.7. pHc regulation fails above pHo 9, and this is accompanied by failure of turgor regulation. Na+ increases above pHo 9, while K+ and Cl decrease. These changes alone cannot however explain the alterations in turgor. Agents known to affect internal pH are also tested for their effect on ion relations.Abbreviations Ci ion concentration - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - DES diethylstilbestrol - DMO 5,5-dimethyloxazolidine-2,4-dione - DNP 2,4-dinitrophenol - pHo external pH - pHc cytoplasmic pH - pHv vacuolar pH - i osmotic pressure - turgor pressure  相似文献   

9.
Day/night changes in turgor pressure (P) and titratable acidity content were investigated in the (Crassulacean-acid-metabolism (CAM) plant Kalanchoe daigremontiana. Measurements of P were made on individual mesophyll cells of intact attached leaves using the pressure-probe technique. Under conditions of high relative humidity, when transpiration rates were minimal, changes in P correlated well with changes in the level of titratable acidity. During the standard 12 h light/12 h dark cycle, maximum turgor pressure (0.15 MPa) occurred at the end of the dark period when the level of titratable acidity was highest (about 300 eq H+·g-1 fresh weight). A close relationship between P and titratable acidity was also seen in leaves exposed to perturbations of the standard light/dark cycle. (The dark period was either prolonged, or else only CO2-free air was supplied in this period). In plants deprived of irrigation for five weeks, diurnal changes in titratable acidity of the leaves were reduced (H=160 eq H+·g-1 fresh weight) and P increased from essentially zero at the end of the light period to 0.02 MPa at the end of the dark period. Following more severe water stress (experiments were made on leaves which had been detached for five weeks), P was zero throughout day and night, yet small diurnal changes in titratable acidity were still measured. These findings are discussed in relation to a hypothesis by Lüttge et al. 1975 (Plant Physiol. 56,613-616) for the role of P in the regulation of acidification/de-acidification cycles of plants exhibiting CAM.Abbreviations CAM crassulacean acid metabolism - FW fresh weight - P turgor pressure  相似文献   

10.
The rate of cell enlargement depends on cell-wall extensibility (m) and on the amount of turgor pressure (P) which exceeds the wall yield threshold (Y). The difference (P-Y) is the growth-effective turgor (P e). Values of P, Y and P ehave been measured in growing bean (Phaseolus vulgaris L.) leaves with an isopiestic psychrometer, using the stress-relaxation method to derive Y. When rapid leaf growth is initiated by light, P, Y and P eall decrease. Thereafter, while the growth rate declines in maturing leaves, Y continues to decrease and P eactually increases. These data confirm earlier results indicating that the changes in light-stimulated leaf growth rate are primarily controlled by changes in m, and not by changes in P e. Seedlings incubated at 100% relative humidity have increased P, but this treatment does not increase growth rate. In some cases Y changes in parallel with P, so that P eremains unchanged. These data point out the importance of determining P e, rather than just P, when relating cell turgor to the growth rate.Abbreviations and symbols FC fusicoccin - m wall extensibility - P turgor pressure - P e effective turgor - RH relative humidity - Y yield threshold - w water potential - s osmotic potential  相似文献   

11.
Mature leaves of Phaseolus vulgaris L. (red kidney bean), Xanthium strumarium L. (cocklebur), and Gossypium hirsutum L. (cotton) were used to study accumulation of abscisic acid (ABA) during water stress. The water status of individual, detached leaves was monitored while the leaves slowly wilted, and samples were cut from the leaves as they lost water. The leaf sections were incubated at their respecitive water contents to allow ABA to build up or not. At least 8 h were required for a new steady-state level of ABA to be established. The samples from any one leaf covered a range of known water potentials (), osmotic pressures (), and turgor pressures (p). The and p values were calculated from pressure-volume curves, using a pressure bomb to measure the water potentials. Decreasing water potential had little effect on ABA levels in leaves at high turgor. Sensitivity of the production of ABA to changes in progressively increased as turgor approached zero. At p=1 bar, ABA content averaged 4 times the level found in fully turgid samples. Below p=1 bar, ABA content increased sharply to as much as 40 times the level found in unstressed samples. ABA levels rose steeply at different water potentials for different leaves, according to the at which turgor became zero. These differences were caused by the different osmotic pressures of the leaves that were used; must cqual - for turgor to be zero. Leaves vary in , not only among species, but also between plants of one and the same species depending on the growing conditions. A difference of 6 bars (calculated at =0) was found between the osmotic pressures of leaves from two groups of G. hirsutum plants; one group had previously experienced periodic water stress, and the other group had never been stressed. When individual leaves were subsequently wilted, the leaves from stress-conditioned plants required a lower water potential in order to accumulate ABA than did leaves from previously unstressed plants. On the basis of these results we suggest that turgor is the critical parameter of plant water relations which controls ABA production in water-stressed leaves.Abbreviations ABA abscisic acid - me-ABA abscisic-acid methyl ester - leaf water potential - osmotic pressure - p volumeaveraged turgor - volumetric modulus of elasticity  相似文献   

12.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

13.
S. B. Kikuta  H. Richter 《Planta》1986,168(1):36-42
The relationship between relative water content (R) and turgor potential (p) may be derived from pressure-volume (PV) curves and analyzed in various ways. Fifty PV curves were measured with the pressure chamber on leaves of durum wheat (Triticum durum L.). The plots of p versus R were highly variable and could not be adequately described by a single mathematical function. The area below the curve was therefore determined by means of an area meter. This procedure gave the integral of turgor from full saturation to the turgor-loss point. Responses to drought treatment could thus be quantified and partitioned into effects of osmotic adjustment and elastic adjustment. These two adjustment responses, which are probably of different metabolic origin, together improve turgor maintenance in durum wheat considerably.Abbreviations and symbols PV pressure-volume - R relative water content - Ti turgor integral between full saturation and turgor-loss point - p turgor (pressure) potential  相似文献   

14.
The influence of plant water relations on phloem loading was studied in Ricinus communis L. Phloem transport was maintained in response to bark incisions even at severe water deficits. Water stress was associated with a net increase in the solute content of the sieve tubes, which resulted in maintenance of a positive phloem turgor pressure p. There was a significant increase in solute flux through the phloem with decreasing xylem water potential (). In addition, sugar uptake by leaf discs was examined in media adjusted to different water potentials with either sorbitol (a relatively impermeant solute) or ethylene glycol (a relatively permeant solute). The limitations in this experimental system are discussed. The results nevertheless indicated that sucrose uptake can be stimulated by a reduction in cell p, but that it is little affected by cell or solute potential s. On the basis of these data we suggest that sucrose loading is turgor-pressure dependent. This may provide the mechanism by which transport responds to changes in sink demand in the whole plant.Abbreviations water potential - s solute potential - p pressure potential  相似文献   

15.
Abscisic acid (ABA) was shown to influence turgor pressure and growth in wheat (Triticum aestivum L.) roots. At a concentrations of 25 mmol·m-3, ABA increased the turgor pressure of cells located within 1 cm of the tip by up to 450 kPa. At 4 to 5 cm from the root tip this concentration of ABA reduced the turgor pressure of peripheral cells (epidermis and the first few cortical cell layers) to zero or close to zero while that of the inner cells was increased. Increases in sap osmolality were dependent on the concentration of ABA and the effect saturated at 5 mmol·m-3 ABA. The increase in osmolality took about 4 h and was partly the result of reducing-sugar accumulation. Levels of inorganic cations were not affected by ABA. Root growth was inhibited at ABA concentrations that caused a turgor-pressure increase. The results show that while ABA can affect root cell turgor pressures, this effect does not result in increased root growth.Abbreviation ABA abscisic acid  相似文献   

16.
N. P. Money  C. Brownlee 《Protoplasma》1987,136(2-3):199-204
Summary Sporangial development in the zoosporic fungusAchlya intricata has been studied using light microscopy, a plasmolytic technique, KCl-filled microelectrodes and ion-selective microelectrodes. The completion of cleavage (spore delimitation) is accompanied by a change in appearance of the sporangium, loss of turgor and membrane potential, decrease in volume and release of K+. The measured loss of K+ is in agreement with previous measurements of extracellular ionic currents around developing sporangia ofAchlya using a vibrating probe. The relationship between these changes and the mechanism of spore liberation is discussed.  相似文献   

17.
18.
Summary Lupins (Lupinus angustifolius and L. cosentinii) growing in 321 containers in a glasshouse were exposed to drought by withholding water. Leaf water potential (1), and leaf osmotic potential (s) were measured daily as soil water became depleted. Leaf water relations were further assessed by a pressure-volume technique and by measuring s and relative water content of leaves after rehydration. Analysis by pressure-volume or cryoscopic techniques showed that leaf osmotic potential at saturation (s100) decreased from -0.6 MPa in well watered to -0.9 MPa in severely droughted leaves, and leaf water potential at zero turgor (zt) decreased from about -0.7 to -1.1 MPa in well watered and droughted plants, respectively. Relative water content at zero turgor (RWCzt) was high (88%) and tended to be decreased by drought. The ratio of turgid leaf weight to dry weight was not influenced by drought and was high at about 8.0. The bulk elastic modulus () was approximately halved by drought when related to leaf turgor potential (p) and probably mediated turgor maintenance during drought. The latter was found to be negatively influenced by rate of drought. Supplying the plants with high levels of K salts did not promote adjustment or turgor maintenance.  相似文献   

19.
K. G. Krieger 《Planta》1978,140(2):107-109
Auxin application to the upper side of the pulvinus of primary leaves of Phaseolus vulgaris L. promoted bending away from the place of application. The effect had a latency of less than 20 min and was specifically induced by substances known as active auxins in growth tests (indoleacetic and 1-naphthaleneacetic acid) but not by inactive auxin analogs (2-naphthaleneacetic, 3-indolepropionic and benzoic acid); 2,4-dichlorophenoxyacetic acid, and L-(-)-2,4-dichlorophenoxyisopropionic acid were of intermediate activity. Auxin-promoted bending was reversible and presumably caused by turgor increase in the treated cells.Abbreviations IAA 3-indolacetic acid - NAA naphthylacetic acid  相似文献   

20.
Carbohydrate and urease tests were performed on the generaSaprolegnia, Achlya andAphanomyces. These tests may be used as additional criteria for the identification of fungi belonging to these genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号