首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently observed that a polyclonal antibody raised against a mouse epididymal luminal fluid protein (MEP 9) recognizes a 25-kDa antigen in mouse testis and epididymis [Rankin et al., Biol Reprod 1992; 46:747-766]. This antigen was localized by light and electron microscopic immunohistochemistry. The immunoreactivity in the testis was found in the residual cytoplasm of the elongated spermatids, in the residual bodies, and in the cytoplasmic droplets of spermatozoa. In the epididymis, the epithelial principal cells were stained from the distal caput to the distal cauda. Immunogold labeling in the principal cells showed diffuse distribution without preferential accumulation in either the endocytic or the secretory apparatus of the cells. In the epididymal lumen, the immunoreactivity was restricted to the sperm cytoplasmic droplets. No membrane-specific labeling was observed in luminal spermatozoa, cytoplasmic droplets, or isolated sperm plasma membranes. Three weeks after hemicastration or severance of the efferent ducts, a normal distribution of the immunoreactive sites was found in the epididymis. Immunoreactivity, was also detected in the epididymal epithelium of immature mice as well as in that of XXSxr male mice having no spermatozoa in the epididymis. These results suggest that the immunoreactivity seen in the principal cells originates from synthesis rather than endocytosis of the testicular protein from disrupted cytoplasmic droplets. Furthermore, these results suggest that the 25-kDa protein is synthesized independently by both testis and epididymis.  相似文献   

2.
The present study deals with immunohistochemical localization of PTHrP in European bison and pine vole testis and epididymis. PTHrP immunoreactivity was observed in spermatogenic cells of seminiferous tubules in European bison and pine vole testis, with the strongerst reaction occurring in spermatozoa of pine vole testis and epididymal duct. We also observed PTHrP expression in vascular smooth muscle of epididymis and testis in both animal species, as well as slightly weaker reaction in endothelial cells of European bison epididymis. PTHrP was also expressed in the smooth muscle of the epididymal duct in European bison and pine vole. In conclusion, PTHrP is a multifunctional peptide showing both paracrine and autocrine action. Its presence in vascular endothelium and smooth muscle of testis and epididymis is connected with the regulation of vascular muscle tone, thus affecting blood flow in the vessels. PTHrP expression depends on a number of local factors. Moreover, we suppose that PTHrP also contributes to the proliferation and differentiation of spermatogenic cells.  相似文献   

3.
A low-bicarbonate concentration and an acidic pH in the luminal fluid of the epididymis and vas deferens are important for sperm maturation. These factors help maintain mature sperm in an immotile but viable state during storage in the cauda epididymidis and vas deferens. Two proton extrusion mechanisms, an Na(+)/H(+) exchanger and an H(+)ATPase, have been proposed to be involved in this luminal acidification process. The Na(+)/H(+) exchanger has not yet been localized in situ, but we have reported that H(+)ATPase is expressed on the apical membrane of apical (or narrow) and clear cells of the epididymis. These cells are enriched in carbonic anhydrase II, indicating the involvement of bicarbonate in the acidification process and suggesting that the epididymis is a site of bicarbonate reabsorption. Previous unsuccessful attempts to localize the Cl/HCO(3) anion exchanger AE1 in rat epididymis did not investigate other anion exchanger (AE) isoforms. In this report, we used a recently described SDS antigen unmasking treatment to localize the Cl/HCO(3) exchanger AE2 in rat and mouse epididymis. AE2 is highly expressed in the initial segment, intermediate zone, and caput epididymidis, where it is located on the basolateral membrane of epithelial cells. The cauda epididymidis and vas deferens also contain basolateral AE2, but in lower amounts. The identity of the AE2 protein was further confirmed by the observation that basolateral AE2 expression was unaltered in the epididymis of AE1-knockout mice. Basolateral AE2 may participate in bicarbonate reabsorption and luminal acidification, and/or may be involved in intracellular pH homeostasis of epithelial cells of the male reproductive tract.  相似文献   

4.
Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-II reacted only with spermatozoa. PNA, GSA-II, SBA, VVA, BPA, RCA-I, and RCA-II reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spermatozoa in increasing order of intensity. ConA, Suc. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, UEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-II selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

5.
Abstract. Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-I1 reacted only with spermatozoa. PNA, GSA-11, SBA, VVA, BPA, RCA-I, and RCA-I1 reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spematozoa in increasing order of intensity. ConA, SUC. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, IJEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-I1 selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

6.
Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain   总被引:18,自引:0,他引:18  
The aims of this study were to determine the cellular and subcellular localization of aquaporin-9 (AQP9) in different rat organs by immunoblotting, immunohistochemistry and immunoelectron microscopy. To analyze this, we used rabbit antibodies to rat AQP9 raised against three different AQP9 peptides (amino acids 267-287, 274-295, and 278-295). In Cos7 cells transfected with rat AQP9, the affinity-purified antibodies exhibited marked labeling, whereas nontransfected cells and cells transfected with aquaporin-8 (AQP8) exhibited no labeling, indicating the specificity of the AQP9 antibodies. Immunoblotting revealed a predominant band of 28 kDa in membranes of total rat liver, epididymis, testes, spleen, and brain. Preabsorption with the immunizing peptides eliminated the labeling. Immunohistochemistry showed strong anti-AQP9 labeling in liver hepatocytes. The labeling was strongest at the sinusoidal surface, and there was little intracellular labeling. Immunoelectron microscopy revealed that the labeling was associated with the plasma membrane of the hepatocytes. In testes Leydig cells exhibited anti-AQP9 labeling, and in epididymis, the stereocilia of the ciliated cells (principal cells) exhibited significant labeling, whereas there was no labeling of the nonciliated cells (basal cells). This was confirmed by immunoelectron microscopy. In spleen strong labeling of cells was observed of leukocytes in the red pulp, whereas there was no labeling of cells in the white pulp. In rat brain, AQP9 immunolabeling was confined to ependymal cells lining the ventricles and to the tanycytes of the mediobasal hypothalamus. Antibody preabsorbed with the immunizing peptide revealed no labeling. In conclusion, AQP9 proteins is strongly expressed in rat liver, testes, epididymis, spleen, and brain.  相似文献   

7.
Zhu H  Ma H  Ni H  Ma XH  Mills N  Yang ZM 《Biology of reproduction》2004,70(4):1088-1095
Lipocalin-type prostaglandin D synthase (L-PGDS), a bifunctional protein, is expressed in the male reproductive organs of many species. However, the expression and regulation of L-PGDS in rat are still uncertain. The present study investigated the regionalization and regulation of L-PGDS expression in rat testis and epididymis by in situ hybridization and immunohistochemistry under the conditions of sexual maturation, castration, and ethylene dimethane sulfonate (EDS) treatments. In sexually mature rats, L-PGDS mRNA was weakly expressed only in the testicular peritubular cells, whereas L-PGDS immunostaining was highly detected in the Leydig cells by Day 70 postpartum. During sexual maturation, L-PGDS mRNA expression was highly detected in the caput, corpus, and cauda of the epididymis 70 days after birth. Compared with normal L-PGDS expression in adult epididymis, both L-PGDS mRNA expression and protein immunostaining were significantly reduced in the caput, corpus, and cauda epididymis after castration. Testosterone propionate treatment induced a significant increase of L-PGDS expression in the epididymis of castrated rats. Compared with adult rat epididymis, L-PGDS mRNA and protein expression was down-regulated after EDS treatment. Testosterone propionate treatment could induce an increase of L-PGDS mRNA and protein expression in the epididymis of EDS-treated rats. In conclusion, both castration and EDS treatments caused a significant decrease of L-PGDS expression in the epididymis, whereas testosterone propionate treatment could induce an increase of L-PGDS expression in the epididymis of both castrated and EDS-treated rats, indicating that L-PGDS expression in the rat epididymis can be up-regulated by testosterone.  相似文献   

8.
Summary The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

9.
The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

10.
11.
Secretions of the testis and epididymis   总被引:4,自引:0,他引:4  
  相似文献   

12.
13.
14.
15.
In order to test if the in utero exposure to static magnetic fields affects testis and epididymis development in mice, females were exposed to 0.5-0.7 T, generated by a permanent magnet, from day 7 of gestation to the day of birth. No significant differences were found between exposed and sham-exposed animals with respect to body weight gain of dam during the gestational period, litter size, body weight of male pups at the day of birth, and body or testis-epididymis weight gain of pups from birth to day 35. Histopathologic evaluation of testis and epididymis of pups of 1, 5, 15, and 35 days of age showed no detectable alterations due to in utero exposure to static magnetic fields.  相似文献   

16.
The transepithelial movement of water into the male reproductive tract is an essential process for normal male fertility. Protein water channels, referred to as aquaporins (AQPs), are involved in increasing the osmotic permeability of membranes. This study has examined the expression of AQP1, AQP2, and AQP7 in epithelial cells in adult dog efferent ducts, epididymis, and vas deferens. Samples of dog male reproductive tract comprising fragments of the testis, initial segment, caput, corpus and cauda epididymidis, and vas deferens were investigated by immunohistochemistry and Western blotting procedures to show the localization and distribution of the AQPs. AQP1 was noted in rete testis, in efferent ducts, and in vessels in the intertubular space, suggesting that AQP1 participated in the absorption of the large amount of testicular fluid occurring characteristically in the efferent ducts. AQP2 expression was found in the rete testis, efferent ducts and epididymis, whereas AQP7 was expressed in the epithelium of the proximal regions of the epididymis and in the vas deferens. This is the first time that AQP2 and AQP7 have been observed in these regions of mammalian excurrent ducts, but their functional role in the dog male reproductive tract remains unknown. Investigations of AQP biology could be relevant for clinical studies of the male reproductive tract and to technologies for assisted procreation. R.F.D. gratefully acknowledges a Fellowship from the Department of Anatomy, Institute of Biosciences, UNESP, Botucatu, SP, Brazil. This work was also funded by FAPESP (Sao Paulo State Research Foundation; grant 04/05578–1 to A.M.O. and grant 04/05579–8 to R.F.D.). This paper is part of the PhD Thesis presented by R.F.D. to the State University of Campinas – UNICAMP, Brazil.  相似文献   

17.
18.
19.
Clusterin, a glycoprotein that elicits cell aggregation, has previously been isolated from ram rete testis fluid, and has been partially characterized. In experiments reported, we have used monoclonal antibodies against clusterin in combination with indirect immunofluorescence microscopy to investigate the distribution of clusterin in the adult ram testis, rete testis, and excurrent ducts. Tissue blocks (5 mm3) were fixed in periodate/lysine/paraformaldehyde containing 0.1% glutaraldehyde and, after embedding, 5-microM sections were prepared for immunolocalization. In the testis, 2 basic patterns were observed: 1) strong to moderate staining for clusterin in the adluminal region with little staining in the basal region of the seminiferous epithelium and germinal cells; and 2) moderate staining throughout the seminiferous epithelium between germinal cells. In the rete testis, strong clusterin staining was localized intracellularly in the rete epithelial cells, most often associated with the luminal surface. In the epididymis, intracellular clusterin was localized in some principal cells of the caput epididymidis. The luminal surfaces and spermatozoa within the lumen were strongly positive. In the vas deferens, clusterin staining was associated with the luminal surface only. The presence of clusterin was clearly detected in unwashed isolated epididymal spermatozoa, but not in spermatozoa washed with phosphate-buffered saline containing 0.05% Tween 20.  相似文献   

20.
The testis and epididymis of gerbil, guinea pig, nutria, and mouse were studied after staining with seven rhodamine-conjugated lectins to disclose the distribution of glycoproteins with different sugar residues. In the testis, the lectins showed a variable affinity for Leydig cells, tubular basement membrane, cytoplasm, acrosome, and plasma membrane of maturing spermatids as well as for Sertoli cell extensions. During acrosomal development, the staining pattern showed characteristic changes with different lectins indicating a gradual processing of the glycoprotein components. The staining in the Sertoli cell extensions displayed a cyclic change linked with the release of spermatozoa. A nuclear staining was prominent in zygotene and pachytene spermatocytes in the mouse, weak in the nutria, but absent in gerbil and guinea pig. The principal cells of epididymis showed a lectin-stained Golgi region as well as a similar staining in the apical surface, microvilli, and tubular contents. This staining was most prominent in the caput/corpus regions with some interspecies differences indicating the epididymal areas active in secretion. Narrow cells active in absorption of testis-derived material were lectin-positive in the initial segment of mouse, gerbil, and nutria epididymis. Large light cells with a strong affinity for some lectins were found in the proximal cauda of gerbil and guinea-pig epididymis. In the nutria, corresponding cells were arranged as islands within the low epithelium. The distal cauda of mouse, gerbil, and nutria was the site for lectin-stained light cells interspersed among the low principal cells. It is concluded that the high and low light cells may be active in the absorption and phagocytosis of residual bodies/cytoplasmic droplets and surplus epididymal secretory material, respectively. Thus, labeled lectins formed a useful tool in the analysis of glycoprotein distribution, processing, secretion, absorption, and degradation in the male reproductive tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号