共查询到20条相似文献,搜索用时 0 毫秒
1.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron. 相似文献
2.
Arabidopsis cDNAs encoding ATJ11, the smallest known J-domain protein, have been isolated and characterized. The precursor protein of 161 amino acid residues was synthesized in vitro and imported by isolated pea chloroplasts where it was localized to the stroma and cleaved to a mature protein of 125 amino acid residues. The mature protein consists of an 80 amino acid J-domain, and N- and C-terminal extensions of 24 and 21 amino acid residues, respectively, which show no similarity to regions in other DnaJ-related proteins. ATJ11 produced in Escherichia coli stimulated the weak ATPase activity of E. coli DnaK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by DnaK, DnaJ and GrpE. ATJ11 is encoded by a single-copy gene on chromosome 4, and is expressed in all plant organs examined. A paralogue of ATJ11, showing 72% identity, is encoded in a 4.5 Mb duplication of chromosome 4 on chromosome 2. These proteins represent a novel class of J-domain proteins. 相似文献
3.
From an ethylmethane sulphonate-mutagenized M2 population of Arabidopsis thaliana L. var Landsberg erecta, a mutant was isolated on the basis of its ability to germinate in the presence of a germination inhibitory concentration
(0.35 mM) of spermine. The mutant produced yellowish green seeds that lacked a mucilaginous sheath, exhibited reduced dormancy
and were generally viviparous under ambient conditions. Dose-response assays indicated increased resistance of the mutant
to spermine but normal sensitivity to spermidine, putrescine and abscisic acid. The spermine resistance and the associated
phenotype of the mutant was inherited as a single recessive nuclear mutation. Following the genetic analysis, spermine-resistant
mutant has been designated as spr2. The results suggest a role for spermine in seed dormancy. 相似文献
4.
Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature 总被引:12,自引:0,他引:12
Huang T Nicodemus J Zarka DG Thomashow MF Wisniewski M Duman JG 《Plant molecular biology》2002,50(3):333-344
Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expressed in transformed plants. Thermal hysteresis activity (indicating the presence of active AFPs) was present in protein extracts from plants expressing both proteins and was also detected in leaf apoplast fluid from plants expressing AFPs with the signal peptide. Transgenic lines did not demonstrate improved ability to survive freezing when compared to wild-type. However, when cooled under four different regimes, transgenic lines with AFPs in the apoplast fluid froze at significantly lower temperatures than did wild-type, especially in the absence of extrinsic nucleation events. 相似文献
5.
Felicity Z. Watts Neil Butt Philip Layfield Jesse Machuka Julian F. Burke Anthony L. Moore 《Plant molecular biology》1994,26(1):445-451
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination. 相似文献
6.
7.
The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain Columbia, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.Abbreviations kDa
kilodalton
- Mr
relative molecular weight
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate 相似文献
8.
The fluence-response curves of wildtype and long-hypocotyl mutants of Arabidopsis thaliana L. for induction and inhibition of seed germination, expressed as percentage germination on probit scale against logarithm of fluence, are very different in shape. The mutants show reduced photoinhibition of hypocotyl growth in white light compared with wildtype, suggesting they are either mutated in phytochrome, the blue/UV-absorbing photosystem or some other red-absorbing photosystem. Calculations of the amount of the far-red-absorbing form of phytochrome (Pfr), by a given fluence have been made taking into account pre-existing Pfr in the seeds. This pre-existing Pfr can change dramatically the slope of a fluence-response curve. Other factors such as an overriding factor, stimulating germination by a non-phytochrome-related process, the total phytochrome content, the range of normal distribution of logarithm of Pfr requirement of individuals in the population and differential screening can influence the form and-or position of a fluence-response curve. Action spectra calculated for germination induction and for the inhibition of induction for the different genotypes are qualitatively the same, having peaks of effectiveness at 660 nm and 730 nm respectively. In the blue region of the spectrum very little activity is seen in comparison with that of red light. Differences in bandwidth of effectiveness for induction of germination are attributed to different amounts of screening pigments in the seed batches. The long-hypocotyl mutants therefore have a normal phytochrome system operative in the control of seed germination, by short-term irradiation and no other photosystem appears to be involved.Abbreviations and symbols FR
far-red light
- P
phytochrome
- Pfr
far-red-absorbing form of P
- Pr
red-absorbing form of P
- R
red light
- SD
standard deviation of logarithm Pfr around
-
logarithm Pfr required for 50% germination
-
aparent molar conversion cross section
-
maximum Pfr/Ptot established by a given wave-length
- 0
initial Pfr 相似文献
9.
G. S. Mourad J. A. White 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,84(7-8):906-914
Summary The nuclear recessive gene, chm1, of Arabidopsis thaliana is a imitator that induces a variety of plastid alterations giving rise to mixed cells and variegated leaves. The variegation is maternally transmitted but chm1 is transmitted in a Mendelian fashion (Rédei 1973; Rédei and Plurad 1973). In order to characterize the different types of plastid alterations induced by chm1, isolating homoplastidic lines, each apparently containing one type of mutant plastid in its cells, was essential since such characterization cannot be carried out on mixed cells. We have used two genetic approaches to isolate several apparently homoplastidic mutant lines by the removal of the mutator from the genetic background, and the maternal transmission of the mutant plastids. The rapidity of obtaining homoplastidic lines in the absence of chm1 indicated a non-stochastic sorting-out of plastids in mixed cells. That each of the chm1-free homoplastidic mutant lines was apparently homoplastidic for one type of mutant plastids was confirmed by electron microscopic observations. Here we report, for the first time, the production of different homoplastidic lines in the absence of the nuclear-mutator gene. Such genetically-stable homogeneous material should be a useful tool for studying the molecular mechanism(s) by which chm1 induces a variety of heritable plastid alterations. 相似文献
10.
Routaboul JM Kerhoas L Debeaujon I Pourcel L Caboche M Einhorn J Lepiniec L 《Planta》2006,224(1):96-107
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during seed development and maturation in wild types and mutants. Wild type seed contained more than 26 different flavonoids belonging to flavonols (mono and diglycosylated quercetin, kaempferol and isorhamnetin derivatives) and flavan-3-ols (epicatechin monomers and soluble procyanidin polymers with degrees of polymerization up to 9). Most of them are described for the first time in Arabidopsis. Interestingly, a novel group of four biflavonols that are dimers of quercetin-rhamnoside was also detected. Quercetin-3-O-rhamnoside (the major flavonoid), biflavonols, epicatechin and procyanidins accumulated in the seed coat in contrast to diglycosylated flavonols that were essentially observed in the embryo. Epicatechin, procyanidins and an additional quercetin-rhamnoside-hexoside derivative were synthesized in large quantities during seed development, whereas quercetin-3-O-rhamnoside displayed two peaks of accumulation. Finally, 11 mutants affected in known structural or regulatory functions of the pathway and their three corresponding wild types were also studied. Flavonoid profiles of the mutants were consistent with previous predictions based on genetic and molecular data. In addition, they also revealed the presence of new products in seed and underlined the plasticity of this metabolic pathway in the mutants. 相似文献
11.
To study the regulation of lysine and threonine metabolism in plants, we have transformed Arabidopsis thaliana with chimeric genes encoding the two bacterial enzymes dihydrodipicolinate synthase (DHPS) and aspartate kinase (AK). These bacterial enzymes are much less sensitive to feedback inhibition by lysine and threonine than their plant counterparts. Transgenic plants expressing the bacterial DHPS overproduced lysine, but lysine levels were quite variable within and between transgenic genotypes and there was no direct correlation between the levels of free lysine and the activity of DHPS. The most lysine-overproducing plants also exhibited abnormal phenotypes. However, these phenotypes were detected only at early stages of plant growth, while at later stages, new buds emerged that looked completely normal and set seeds. Wild-type plants exhibited relatively high levels of free threonine, suggesting that in Arabidopsis AK regulation may be more relaxed than in other plants. This was also supported by the fact that expression of the bacterial AK did not cause any dramatic elevation in this amino acid. Yet, the relaxed regulation of threonine synthesis in Arabidopsis was not simply due to a reduced sensitivity of the endogenous AK to feedback inhibition by lysine and threonine because growth of wild-type plants, but not of transgenic plants expressing the bacterial AK, was arrested in media containing these two amino acids. The present results, combined with previous studies from our laboratory, suggest that the regulation of lysine and threonine metabolism is highly variable among plant species and is subject to complex biochemical, physiological and environmental controls. The suitability of these transgenic Arabidopsis plants for molecular and genetic dissection of lysine and threonine metabolism is also discussed. 相似文献
12.
Morphological analysis of flowers was carried out in Arabidopsis thaliana wild type plants and agamous and apetala2 mutants. No direct substitution of organs takes place in the mutants, since the number and position of organs in them do not correspond to the structure of wild type flower. In order to explain these data, a notion of spatial pattern formation in the meristem was introduced, which preceded the processes of appearance of organ primordia and formation of organs. Zones of acropetal and basipetal spatial pattern formation in the flower of wild type plants were postulated. It was shown that the acropetal spatial pattern formation alone took place in agamous mutants and basipetal spatial pattern formation alone, in apetala2 mutants. Different variants of flower structure are interpreted as a result of changes in the volume of meristem (space) and order of spatial pattern formation (time). 相似文献
13.
Phosphate acquisition heterosis in Arabidopsis thaliana: a morphological and physiological analysis 总被引:7,自引:0,他引:7
Although phosphate acquisition efficiency (PAE) is of considerable agricultural importance, little is known about its inheritance. The objective of this study was to determine the inheritance of PAE-related morphological and physiological traits in Arabidopsis thaliana. C24 and Col-O, two Arabidopsis accessions differing in their abilities to acquire phosphate from hydroxyl phosphate, were crossed. The resulting hybrid showed superior acquisition of phosphate from hydroxylapatite when compared with either parent. The data suggest that the superiority of the F1 hybrid is due to the accumulation of favourable dominant genes at numerous loci. The hybrid inherited the long root hair length trait from C24 and the long root length trait of Col-O. In addition, the hybrid inherited enhanced phosphate transporter expression from C24. The analysis of morphological and physiological traits in this hybrid will be useful for evaluating and predicting PAE performance in other plant species. 相似文献
14.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements. 相似文献
15.
Mitochondrial F(1)F(0)-ATPase is a key enzyme in plant metabolism, providing cells with ATP that uses the transmembrane electrochemical proton gradient to drive synthesis of ATP. A 6 kDa protein (At3g46430) has been previously purified from Arabidopsis thaliana mitochondrial F(1)F(0)-ATPase. In this study, the gene (AtMtATP6; GenBank accession no. AK117680) encoding this protein was isolated from Arabidopsis and characterized. Northern blot analyses showed that the expression of AtMtATP6 gene in Arabidopsis suspension-cultured cells was induced by several abiotic stresses from salts, drought, and cold. Over-expression of AtMtATP6 gene in transgenic yeast and Arabidopsis plants increased the resistance to salts, drought, oxidative and cold stresses. Taken together, our data raise the possibility that induction of the F(1)F(0)-ATPase plays a role in stress tolerance. 相似文献
16.
X. -M. Wang R. L. Scholl K. A. Feldmann 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,72(3):328-336
Summary A population of A. thaliana, produced by self-fertilization of ethylmethane sulfonate treated plants, was exposed to chlorate in the watering solution, and plants showing early susceptibility symptoms were rescued. Among the progeny lines of these plants five were shown to be repeatably chlorate-hypersusceptible. One of these lines (designated C-4) possessed elevated activity of nitrate reductase (NR). The NR activity of mutant C-4 was higher than that of normal plants throughout the life cycle. Nitrite reductase and glutamine synthetase activities of C-4 were normal, as were chlorate uptake rate and tissue nitrate content. The elevated NR activity apparently was responsible for the chlorate hypersusceptibility of C-4. Inheritance studies of NR indicated that the elevated activity of C-4 was probably controlled by a single recessive allele. 相似文献
17.
ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis 总被引:2,自引:0,他引:2
Trentmann SM 《Plant molecular biology》2000,44(1):11-25
18.
Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana 总被引:22,自引:0,他引:22
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms. 相似文献
19.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl
chlorophyll
- FR
far-red light
- HF
highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72)
- HW
high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40)
- LHCI, LHCII
light-harvesting complex of PSI, PSII
- qO
quenching of dark-level chlorophyll fluorescence
- qN
non-photochemical quenching of variable chlorophyll fluorescence
- qP
photochemical quenching of variable chlorophyll fluorescence
- R
red light
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase
We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A. 相似文献
20.
In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants 总被引:5,自引:0,他引:5
In the sequences released by the Arabidopsis Genome Initiative (AGI), we discovered a new and unexpectedly large family of orphan genes (127 genes by 01.08.99), named AtPCMP. The distribution of the AtPCMP genes on the five chromosomes suggests that the genome of Arabidopsis thaliana contains more than 200 genes of this family (1% of the whole genome). The deduced AtPCMP proteins are characterized by a surprising combinatorial organization of sequence motifs. The amino-terminal domain is made of a succession of three conserved motifs which generate an important diversity. These proteins are classified into three subfamilies based on the length and nature of their carboxy-terminal domain constituted by 1–6 motifs. All the motifs characterized have an important level of conservation in both sequence and spacing. A specific signature of this large family is defined. The presence of ESTs in databases and the detection of clones in A. thaliana cDNA libraries indicate that most of the genes of this family are expressed. The absence of similar sequences outside the plant kingdom strongly suggests that this unusually large orphan family is unique to plants. Features, the genesis, the potential function and the evolution of this plant combinatorial and modular protein family are discussed. 相似文献