首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. N. Sivak  U. Heber  D. A. Walker 《Planta》1985,163(3):419-423
Light-scattering, which can be taken as an indicator of the transthylakoid proton-gradient, and chlorophyll a fluorescence, have been followed simultaneously during re-illumination of spinach leaves at different energy fluence rates and carbon dioxide concentrations. The slow fluorescence transient (M peak), which has been associated with photosynthetic induction, was observed in air only at the lower fluence rates used. Data are presented that indicate that M peaks in chlorophyll fluorescence kinetics can only be observed if there is also a simultaneous transient in light-scattering and that these transients are observed when the dark period is relatively long, fluence rate relatively low, and CO2 concentration relatively high.The results are discussed in relation to the varying demands on ATP by carbon assimilation during induction of photosynthesis at different carbon dioxide concentrations and the manner in which these variations influence the quenching of chlorophyll a fluorescence.Abbreviation Chl chlorophyll  相似文献   

2.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

3.
D. A. Walker 《Planta》1981,153(3):273-278
When spinach leaves are re-illuminated, after dark periods of 90 s or less, an initial fluorescence peak is observed which rapidly gives way to a much lower terminal value. After 2 min or more in the dark, however, there is a secondary rise, at about 50–70 s, which then gives way, more slowly, to approximately the same low terminal value as before. The secondary rise is eliminated or disguised by feeding D,L-glyceraldehyde (a specific inhibitor of photosynthetic carbon assimilation) and by manose, 2-deoxyglucose and glucosamine, all of which are believed to sequester cytoplasmic orthophosphate. This secondary rise in fluorescence is discussed in relation to photosynthetic induction and the manner in which these compounds may modulate fluorescence by their effect on the availability of orthophosphate and their consequent impact on the adenylate status of the stroma.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CCCP carbonylcyanidchlorophenylhydrazon  相似文献   

4.
W. Gsell  O. Kiirats  W. Hartung  U. Heber 《Planta》1989,177(3):367-376
The relationship between components of non-photochemical quenching of chlorophyll fluorescence yield (qNP) and dissipation of excessive excitation energy was determined in cotton leaves using concurrent measurements of fluorescence and gas-exchange at 2% and 20% O2 under a range of photon flux densities and CO2 pressures. A nearly stoichiometric relationship was obtained between dissipation of energy not used in photosynthetic CO2 fixation or photorespiration and qNP provided that a component, probably associated with state transitions, was not included in qNP. Although two distinct components of qNP were resolved on the basis of their relaxation kinetics, both components appear effective in energy dissipation. The photon yield of open photosystem-II reaction centers decreased linearly with increases in qNP, indicating that much of the energy dissipation occurs in the pigment bed. However, increases in qNP appear dependent on the redox state of these centers. The results are discussed in relation to current hypotheses of the molecular basis of non-radiative energy dissipation. It is concluded that determinations of qNP can provide a quantitative measure of the dissipation of excessive excitation energy if precautions are taken to ensure that the maximum fluorescence yield is measured under conditions that provide complete closure of the photosystem-II reaction centers. It is also concluded that such dissipation can prevent photoinhibitory damage in cotton leaves even under extreme conditions where as much as 80% of the excitation energy is excessive.Abbreviations and symbols F M, F O, F V, F S fluorescence yield when all PSII centers are closed, when all centers are open, FM-FO, at steady state in the light - PFD photon flux density (photon fluence rate) - P(CO2) sum of rates of CO2 uptake and dark respiration - P(ET) sum of P(CO2) and rate of oxygenation - PSI, PSII photosystem I, II - qNP, qP non-photochemical, photochemical fluorescence quenching - Q the acceptor for PSII - Q r/Q t the fraction of reduced Q or closed PSII centers - r/ t intrinsic photon yield of CO2 fixation in the absence of photorespiration of O2 evolution - a P(ET)/PFD (absorbed light) C.I.W. Publication No. 1016  相似文献   

5.
Summary Sudden illumination of sunflower (Helianthus annuus L. cv. CGL 208) leaves and canopies led to excess absorbed PFD and induced apparent reflectance changes in the green, red and near-infrared detectable with a remote spectroradiometer. The green shift, centered near 531 nm, was caused by reflectance changes associated with the de-epoxidation of violaxanthin to zeaxanthin via antheraxanthin and with the chloroplast thylakoid pH gradient. The red (685 nm) and near-infrared (738 nm) signals were due to quenching of chlorophyll fluorescence. Remote sensing of shifts in these spectral regions provides non-destructive information on in situ photosynthetic performance and could lead to improved techniques for remote sensing of canopy photosynthesis.CIW Publication #1072  相似文献   

6.
The mechanism of rapidly-relaxing non-photochemical quenching in two plant species,Chenopodium album L. andDigitalis purpurea L., that differ considerably in their capacity for such quenching has been investigated (Johnson G.N. et al. 1993, Plant Cell Environ.16, 673–679). Illumination of leaves of both species in the presence of 2% O2 balance N2 led to the formation of zeaxanthin. When thylakoids were isolated from leaves of each species that had been so treated it was found that inD. purpurea non-photochemical quenching was “activated” relative to the control; a higher level of quenching was found for a given trans-thylakoid pH gradient. No such activation of non-photochemical quenching was observed inC. album. Similar conclusions were drawn when comparing quenching in intact leaves. It is concluded that light activation of quenching is a process that cannot readily be induced inC. album. Measurement of the sensitivity of non-photochemical quenching in leaves ofC. album andD. purpurea to dithiothreitol (DTT; a reagent that inhibits formation of zeaxanthin) showed differences between the two species. In both cases, feeding leaves with DTT inhibited the light-induced formation of zeaxanthin. InC. album this was accompanied by complete inhibition of reversible non-photochemical quenching, whereas inD. purpurea this inhibition was only partial. Data are discussed in relation to studies on the mechanism of quenching and the role of zeaxanthin in this process.  相似文献   

7.
Inhibition of photosynthetic reactions by light   总被引:8,自引:0,他引:8  
Beate Barényi  G. H. Krause 《Planta》1985,163(2):218-226
Illumination of isolated intact chloroplasts of Spinacia oleracea L. for 10 min with 850 W m-2 red light in the absence of substrate levels of bicarbonate caused severe inhibition of subsequently measured photosynthetic activities. The capacity of CO2-dependent O2 evolution and of non-cyclic electron transport were impaired to similar degrees. This photoinactivation was prevented by addition of bicarbonate which allowed normal carbon metabolism to proceed during preillumination. Photoinhibition of electron transport was observed likewise upon illumination of intact or broken chloroplasts when efficient electron acceptors were absent. Addition of uncouplers did not influence the extent of inhibition. Studies of partial electron-transport reactions indicated that the activity of both photosystems was affected by light. In addition, the water-oxidation system or its connection to photosystem II seemed to be impaired. Preillumination did not cause uncoupling of photophosphorylation. Chlorophyll-fluorescence data obtained at room temperature and at 77 K are consistent with the view that photosystem-II reaction centers were altered. Addition of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) or 1,4-diazabicyclo(2,2,2)octane to isolated thylakoids prior to preillumination substantially diminished photoinhibition. This result shows that reactive oxygen species were involved in the damage. It is concluded that bright light, which normally does not damage the photosynthetic apparatus, may exert the described destructive effects under conditions that restrict metabolic turnover of photosynthetic energy.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI photosystem I - PSII photosystem II  相似文献   

8.
K. -J. Dietz  U. Schreiber  U. Heber 《Planta》1985,166(2):219-226
The response of chlorophyll fluorescence elicited by a low-fluence-rate modulated measuring beam to actinic light and to superimposed 1-s pulses from a high-fluence-rate light source was used to measure the redox state of the primary acceptor Q A of photosystem II in leaves which were photosynthesizing under steady-state conditions. The leaves were exposed to various O2 and CO2 concentrations and to different energy fluence rates of actinic light to assess the relationship between rates of photosynthesis and the redox state of Q A. Both at low and high fluence rates, the redox state of Q A was little altered when the CO2 concentration was reduced from saturation to about 600 l·l-1 although photosynthesis was decreased particularly at high fluence rates. Upon further reduction in CO2 content the amount of reduced Q A increased appreciably even at low fluence rates where light limited CO2 reduction. Both in the presence and in the absence of CO2, a more reduced Q A was observed when the O2 concentration was below 2%. Q A was almost fully reduced when leaves were exposed to high fluence rates under nitrogen. Even at low fluence rates, Q A was more reduced in shade leaves of Asarum europaeum and Fagus sylvatica than in leaves of Helianthus annuus and Fagus sylvatica grown under high light. Also, in shade leaves the redox state of Q A changed more during a transition from air containing 350 l·l-1 CO2 to CO2-free air than in sun leaves. The results are discussed with respect to the energy status and the CO2-fixation rate of the leaves.Abbreviations and symbols L 1,2 first and second actinic light beam - Q A primary acceptor of photosystem II - q Q Q-quenching  相似文献   

9.
We investigated to what extent south-exposed leaves (E-leaves) of the evergreen ivy (Hedera helix L.) growing in the shadow of two deciduous trees suffered from photoinhibition of photosynthesis when leaf-shedding started in autumn. Since air temperatures drop concomitantly with increase in light levels, changes in photosynthetic parameters (apparent quantum yield, i and maximal photosynthetic capacity of O2 evolution, Pmax; chlorophyll-a fluorescence at room temperature) as well as pigment composition were compared with those in north-exposed leaves of the same clone (N-leaves; photosynthetic photon flux density PPFD< 100 mol · m–2 · s–2) and phenotypic sun leaves (S-leaves; PPFD up to 2000 mol · m–2 · s–1).In leaves exposed to drastic light changes during winter (E-leaves) strong photoinhibition of photosynthesis could be observed as soon as the incident PPFD increased in autumn. In contrast, in N-leaves the ratio of variable fluorescence to maximum fluorescence (FV/FMm) and i did not decline appreciably prior to severe frosts (up to -12° C) in January. At this time, i was reduced to a similar extent in all leaves, from about 0.073 mol O2 · mol–1 photons before stress to about 0.020. Changes in i were linearly correlated with changes in fv/fm (r = 0.955). The strong reduction in FV/FM on exposure to stress was caused by quenching in FM. The initial fluorescence (F0), however, was also quenched in all leaves. The diminished fluorescence yield was accompanied by an increase in zeaxanthin content. These effects indicate that winter stress in ivy primarily induces an increase in non-radiative energy-dissipation followed by photoinhibitory damage of PSII. Although a pronounced photooxidative bleaching of chloroplast pigments occurred in January (especially in E-leaves), photosynthetic parameters recovered completely in spring. Thus, the reduction in potential photosynthetic yield in winter may be up to three times greater in leaves subjected to increasing light levels than in leaves not exposed to a changing light environment.Abbreviations and Symbols F0, FM initial and maximal fluorescence yield when all PSII centres are open and closed - FV variable fluorescence (FM-F0) - Pmax maximal photosynthetic capacity at 1000 umol · m–2 · s–1 PPFD and CO2 saturation - PPFD photosynthetic photon flux density - i apparent quantum yield of photosynthetic O2 evolution - E-leaves, N-leaves shade leaves exposed, not exposed to drastic light changes during winter - S-leaves sun leaves from an open ivy stand Dedicated to Professor Otto Härtel on the occasion of his 80th birthdayThis work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

10.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

11.
Photoinhibition of photosynthesis in willow leaves under field conditions   总被引:7,自引:0,他引:7  
Erling Ögren 《Planta》1988,175(2):229-236
Chlorophyll fluorescence of leaves of a willow (Salix sp.) stand grown in the field in northern Sweden was measured on several occasions during the growing season of 1987. For leaves that received mostly full daylight, the F V/F P ratio declined roughtly 15% in the afternoon on cloudless days in July (F P is the fluorescence at the peak of the induction curve obtained at the prevailing air temperature after 45 min of dark adaptation, and F V is variable fluoresence, F V=F P-F O, where F O is minimal fluorescence). There was no decrease in the F V/F P ratio on cloudy days, while the effect was intermediate on changeable days. In view of this light dependence, together with the fact that the decline in the F V/F P ratio was paralleled with an equal decline in the corresponding fluorescence ratio F V/F M at 77K, and a similar decline in the maximum quantum yield of O2 evolution, it is suggested that the decline in the F V/F P ratio represents a damage in photosyntem II attributable to photoinhibition. Recovery of the F V/F P ratio in dim light following a decline on a cloudless day took 7–16 h to go to completion; the F V/F P ratio was fully restored the following morning. When all active leaves of a peripheral shoot were compared, the F V/F P ratio in the afternoon of a day of bright light varied greatly from leaf to leaf, though the majority of leaves showed a decline. This variation was matched by a pronounced variation in intercepted photon flux density. When leaves developed in the shade were exposed to full sunlight by trimming of the stand an increased sensitivity to photoinhibition was observed as compared to peripheral leaves. The present study indicates that peripheral willow shoots experienced in the order of 10–20% photoinhibition during an appreciable part of their life. This occurred even though the environmental conditions were within the optimal range of photosynthesis and growth.Abbreviations and symbols F O minimum fluorescence - F P fluorescence at the peak of the induction curve obtained at normal ambient temperatures - F V variable fluorescence - F M maximum fluorescence obtained at 77K - PPFD photosynthetic photon flux density  相似文献   

12.
The kinetics and temperature dependencies of development and relaxation of light-induced absorbance changes caused by deepoxidation of violaxanthin to antheraxanthin and zeaxanthin (Z; peak at 506 nm) and by light scattering (S; peak around 540 nm) as well as of nonphotochemical quenching of chlorophyll fluorescence (NPQ) were followed in cotton leaves. Measurements were made in the absence and the presence of dithiothreitol (DTT), an inhibitor of violaxanthin deepoxidase. The amount of NPQ was calculated from the Stern-Volmer equation. A procedure was developed to correct gross AS (Sg) for absorbance changes around 540 nm that are due to a spectral overlap with Z. This protocol isolated the component which is caused by light-scattering changes alone (Sn). In control leaves, the kinetics and temperature dependence of the initial rate of rise in Sn that takes place upon illumination, closely matched that of Z. Application of DTT to leaves, containing little zeaxanthin or antheraxanthin, strongly inhibited both Sn and NPQ, but DTT had no inhibitory effect in leaves in which these xanthophylls had already been preformed, showing that the effect of DTT on An and NPQ results solely from the inhibition of violaxanthin deepoxidation. The rates and maximum extents of Sn and NPQ therefore depend on the amount of zeaxanthin (and/or antheraxanthin) present in the leaf. In contrast to the situation during induction, relaxation of Z upon darkening was much slower than the relaxation of Sn and NPQ. The relaxation of Sn and NPQ showed quantitatively similar kinetics and temperature dependencies (Q10=2.4). These results are consistent with the following hypotheses: The increase in lumen-proton concentration resulting from thylakoid membrane energization causes deepoxidation of violaxanthin to antheraxanthin and zeaxanthin. The presence of these xanthophylls is not sufficient to cause Sn or NPQ but, together with an increased lumen-proton concentration, these xanthophylls cause a conformational change, reflected by Sn. The conformational change facilititates nonradiative energy dissipation, thereby causing NPQ. Membrane energization is prerequisite to conformational changes in the thylakoid membrane and resultant nonradiative energy dissipation but the capacity for such changes in intact leaves is quite limited unless zeaxanthin (and/or antheraxanthin) is present in the membrane. The sustained Sn and NPQ levels that remain after darkening may be attributable to a sustained high lumen-proton concentration.Abbreviations A antheraxanthin - DTT dithiothreitol - F, Fm chlorophyll fluorescence yield at actual, full closure of the PSII centers - NPQ nonphotochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - V violaxanthin - Z zeaxanthin - Sn, Z spectral absorbance change caused by light-scattering, violaxanthin deepoxidation We thank Connie Shih for skillful assistance in growing the plants, and for conducting HPLC analyses. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W. B. is gratefully acknowledged. This work was supported in part by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B. This is C. I. W. — D. P. B. Publication No. 1094.  相似文献   

13.
Leaves of Populus balsamifera grown under full natural sunlight were treated with 0, 1, or 2 l SO2·1-1 air under one of four different photon flux densities (PFD). When the SO2 exposures took place in darkness or at 300 mol photons·m-2·s-1, sulfate accumulated to the levels predicted by measurements of stomatal conductance during SO2 exposure. Under conditions of higher PFD (750 and 1550 mol·m-2·s-1), however, the predicted levels of accumulated sulfate were substantially higher than those obtained from anion chromatography of the leaf extracts. Light-and CO2-saturated capacity as well as the photon yield of photosynthetic O2 evolution were reduced with increasing concentration of SO2. At 2 l SO2·1-1 air, the greatest reductions in both photosynthetic, capacity and photon yield occurred when the leaves were exposed to SO2 in the dark, and increasingly smaller reductions in each occurred with increasing PFD during SO2 exposure. This indicates that the inhibition of photosynthesis resulting from SO2 exposure was reduced when the exposure occurred under conditions of higher light. The ratio F v/F M (variable/maximum fluorescence emission) for photosyntem II (PSII), a measure of the photochemical efficiency of PSII, remained unaffected by exposure of leaves to SO2 in the dark and exhibited only moderate reductions with increasing PFD during the exposure, indicating that PSII was not a primary site of damage by SO2. Pretreatment of leaves with SO2 in the dark, however, increased the susceptibility of PSII to photoinhibition, as such pretreated leaves exhibited much greater reductions inF V/F M when transferred to moderate or high light in air than comparable control leaves.Abbreviations and symbols A1200 photosynthetic capacity (CO2-saturated rate of O2 evolution at 1200 mol photons·m-2·s-1) - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - FV variable fluorescence emission - PFD photon flux density (400–700 nm) - PSII photosystem II  相似文献   

14.
Goss R  Opitz C  Lepetit B  Wilhelm C 《Planta》2008,228(6):999-1009
In the present study we address the question which factors during the synthesis of zeaxanthin determine its capacity to act as a non-photochemical quencher of chlorophyll fluorescence. Our results show that zeaxanthin has to be synthesized in the presence of a transmembrane proton gradient. However, it is not essential that the proton gradient is generated by the light-driven electron transport. NPQ-effective zeaxanthin can also be formed by an artificial proton gradient in the dark due to ATP hydrolysis. Zeaxanthin that is synthesized in the dark in the absence of a proton gradient by the low pH-dependent activation of violaxanthin de-epoxidase is not able to induce NPQ. The second important factor during the synthesis of zeaxanthin is the pH-value of the stromal side of the thylakoid membrane. Here we show that the stromal side has to be neutral or slightly basic in order to generate zeaxanthin which is able to induce NPQ. Thylakoid membranes in reaction medium pH 5.2, which experience low pH-values on both sides of the membrane, are unable to generate NPQ-effective zeaxanthin, even in the presence of an additional light-driven proton gradient. Analysing the pigment contents of purified photosystem II light-harvesting complexes we are further able to show that the NPQ ineffectiveness of zeaxanthin formed in the absence of a proton gradient is not caused by changes in its rebinding to the light-harvesting proteins. Purified monomeric and trimeric light-harvesting complexes contain comparable amounts of zeaxanthin when they are isolated from thylakoid membranes enriched in either NPQ-effective or ineffective zeaxanthin.  相似文献   

15.
Summary A convenient system for the rapid simultaneous measurement of both chlorophyll fluorescence quenching using a modulated light system, and of CO2, and water vapour exchange by leaves is described. The system was used in a study of the effects of water deficits on the photosynthesis by apple leaves (Malus x domestica Borkh.). Apple leaves were found to have low values of steady-state variable fluorescence, and the existence of significant fluorescence with open traps (Fo) quenching necessitated the measurement and use of a corrected Fo in the calculation of quenching components. Long-term water stress had a marked effect on both gas-exchange and chlorophyll fluorescence quenching. Non-photochemical quenching (qn) in particular was increased in water-stressed leaves, and it was particularly sensitive to incident radiation in such leaves. In contrast, rapid dehydration only affected gas exchange. Relaxation of qn quenching in the dark was slow, taking approximately 10 min for a 50% recovery, in well-watered and in draughted plants, and whether or not the plants had been exposed to high light.  相似文献   

16.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

17.
Carbon assimilation of spinach (Spinacia oleracea L.) leaves was measured in the presence of 2000l· l–1CO2 and 2% O2 in the gas phase to suppress photorespiratory reactions and to reduce stomatal diffusion resistance. Simultaneously, membrane parameters such as modulated chlorophyll fluorescence, oxidation of P700 in the reaction centre of photosystem I, and apparent changes in absorbance at 535 nm were recorded. After light-regulated enzymes were activated at a high irradiance, illumination was changed. About 3 min later (to maintain the previous activation state of enzymes), leaves were shock-frozen and freeze-dried. Chloroplasts were isolated nonaqueously and analysed for ATP, ADP, inorganic phosphate, NADPH and NADP. Observations made under the chosen conditions differed in some important aspects from those commonly observed when leaves are illuminated in air. (i) Not only assimilation, but also the phosphorylation potential [ATP]/([ADP]·[Pi]) increased hyperbolically with irradiance towards saturation. In contrast, the ratio of NADPH to NADP did not change much as irradiances increased from low to high photon flux densities. When ATP, the phosphorylation potential and the assimilatory force, FA (the product of phosphorylation potential and NADPH/NADP ratio), were plotted against assimilation, ATP increased relatively less than assimilation, whereas the phosphorylation potential increased somewhat more steeply than assimilation did. A linear relationship existed between assimilation and FA at lower irradiances. The assimilatory force FA increased more than assimilation did when irradiances were very high. Differences from previous observations, where FA was under some conditions higher at low than at high rates of carbon assimilation, are explained by differences in flux resistances caused not only by stomatal diffusion resistance but also by differences in the activity of light-regulated enzymes, (ii) The relationship between P700 oxidation and a fast absorption change with a maximum close to 520 nm on one hand and carbon assimilation on the other hand was largely linear under the specific conditions of the experiments. A similar linear relationship existed also between the quantum efficiency of electron flow through photosystem II and the quantum efficiency of photosystem I electron transport. (iii) Whereas the increase in non-photochemical fluorescence quenching, qN, was similar to the increase in assimilation, the relationship between light scattering and assimilation was distinctly sigmoidal. Light scattering appeared to be a better indicator of control of photosystem II activity under excessive irradiation than qN. (iv) The results are discussed in relation to the relative significance of chloroplast levels of ATP and NADPH and of the assimilatory force FA in driving carbon assimilation. From the observations, the proton/electron (H+/e) ratio of linear electron transport is suggested to be 3 and the H+/ATP ratio to be 4 in leaves. An H+/e ratio of 3 implies the existence of an obligatory Q-cycle in leaves.Abbreviations FA assimilatory force - Fo fluorescence after long dark adaptation - Fm maximum fluorescence level - Fs steady-state fluorescence - PGA 3-phosphoglycerate - PFD photon flux density - P700 (P700+) electron-donor pigment in the reaction center of PSI (its oxidized form) - QA primary quinone acceptor of PSII - qP photochemical quenching - qN non-photochemical quenching - PSII relative quantum efficiency of energy conversation at the level of photosystem II - PSI relative quantum efficiency of photosystem II This research was supported by the Sonderforschungsbereich 251 of the University of Würzburg and the Stiftung Volkswagenwerk. U.G. is a member of the Graduate College of the Julius-von-Sachs Institut für Biowissenschaften, University of Würzburg, being on leave from Tartu University, Tartu, Estonia. The authors are grateful to Prof. A. Laisk, Chair of Plant Physiology, Tartu University, for stimulating discussions.  相似文献   

18.
We devised recently a method to trap intact isolated chloroplasts on a solid support consisting of membrane filters made of cellulose nitrate (Cerovi et al., 1987, Plant Physiol. 84, 1249–1251). The addition of alkaline phosphatase to the reaction medium enabled continuous photosynthesis by spinach (Spinacia oleracea L.) chloroplasts to be sustained by hydrolysis of newly produced and exported triose phosphates and recycling of orthophosphate. In this system, simultaneous measurements of chlorophyll fluorescence and oxygen evolution were performed and their dependence on orthophosphate concentration was investigated. Optimal photosynthesis was obtained at a much higher initial orthophosphate concentration (2–4 mM) compared to intact chloroplasts in suspension. Secondary kinetics of chlorophyll fluorescence yield were observed and were shown to depend on the initial orthophosphate concentration.Abbreviations Chl chlorophyll - CSS intact isolated chloroplasts on solid support - ICS intact isolated chloroplasts in suspension - Pi orthophosphate - v rate of O2 evolution - PPFD photosynthetic photon flux density The authors wish to thank Dr. Marijana Plesniar, from the University of Novi Sad, for stimulating discussions. This work was supported by the Fond for Science of the Republic of Serbia. Z.G.C.'s visit to the Robert Hill Laboratory was supported by the British Council and the University of Sheffield.  相似文献   

19.
H. Ekkehard  Mark Stitt 《Planta》1989,179(1):51-60
Spinach leaf discs were floated on methyl-viologen solutions (5–200 nmol·l-1) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of pH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.Abbreviations and symbols Frul,6P2 (Fru1,6Pase) fructose-1,6-bisphosphate(ase) - Fru2,6P, (Fru2,6Pase) fructose-2,6-bisphosphate(-ase) - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PSI and PSII photosystems I and II - qE high energy' quenching of chlorophyll fluorescence - PGA glycerate-3-phosphate - QA primary stable acceptor of PSII - Ru5P (Ru1,5P2) ribulose-5-phosphate (-1,5-bisphosphate) - SPS sucrose-phosphate synthase - triose P dihydroxyacetone phosphate plus glyceraldehyde-3-phosphate - s apparent quantum yield Dedicated to Professor E. Latzko on the occasion of his 65th birthday  相似文献   

20.
The possible role of zeaxanthin formation and antenna proteins in energy-dependent chlorophyll fluorescence quenching (qE) has been investigated. Intermittent-light-grown pea (Pisum sativum L.) plants that lack most of the chlorophyll a/b antenna proteins exhibited a significantly reduced qE upon illumination with respect to control plants. On the other hand, the violaxanthin content related to the number of reaction centers and to xanthophyll cycle activity, i.e. the conversion of violaxanthin into zeaxanthin, was found to be increased in the antenna-protein-depleted plants. Western blot analyses indicated that, with the exception of CP 26, the content of all chlorophyll a/b-binding proteins in these plants is reduced to less than 10% of control values. The results indicate that chlorophyll a/b-binding antenna proteins are involved in the energy-dependent fluorescence quenching but that only a part of qE can be attributed to quenching by chlorophyll a/b-binding proteins. It seems very unlikely that xanthophylls are exclusively responsible for the qE mechanism.Abbreviations CAB chlorophyll a/b-binding - Chl chlorophyll - FV variable fluorescence - IML intermittent light - LHC light harvesting complex - PFD photon flux density - qP photochemical quenching of chlorophyll fluoresence - qN non-photochemical quenching - qE energy-dependent quenching - qI photoinhibitory quenching - qT quenching by state transition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号