首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The Morquio syndrome is a spondyloepiphyseal dysplasia characterized by excretion in urine of excessive amounts of keratan sulfate and chondroitin sulfate. To investigate the enzymic basis of this disease, assays for sulfatase were performed using chick embryo chondroitin sulfate and rat chondrosarcoma chondroitin 4-sulfate as substrates. The data obtained, using skin fibroblasts as an enzyme source, indicate that Morquio's syndrome is a deficiency of chondroitin sulfate N-acetylhexosamine sulfate sulfatase.  相似文献   

3.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

4.
An extract of bacterial cells Pseudomonas sp. IFO-13309 grown on medium containing 0.1% bovine cornea keratan sulfate of low sulfate content degraded exhaustively bovine cornea keratan sulfate to give 2-acetamido-2-deoxy-beta-D-gluco-pyranosyl 6-sulfate-(1 goes to 3)-D-galactose, isolated by gel filtration on Sephadex G-25 and purified by preparative paper chromatography. This was reduced with sodium borotritide to give 2-acetamido-2-deoxy-beta-D-glucopyranosyl 6-sulfate-(1 goes to 3)-D-[1-3H]galactitol, purified by gel filtration on Sephadex G-15, which was an excellent substrate for the measurement of 2-acetamido-2-deoxy-D-glucose 6-sulfate sulfatase. The reduced, radioactive monosulfated disaccharide was desulfated with methanolic 70mM hydrogen chloride and purified by gel filtration on Sephadex G-15 to give O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1 goes to 3)-D-[1-3H]galactitol, which allowed the measurement of (1 goes to 3)-N-acetyl-beta-D-glucosaminidase. This enzyme may participate in the normal degradation of keratan sulfate.  相似文献   

5.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

6.
Proteoglycans were extracted, in a yield of about 90%, from costal cartilage of young, growing guinea-pigs. Three solvents were used in sequence: 0.4 M guanidine - HCl, pH 5.8, 4 M guanidine - HCl, pH 5.8, and 4 M guanidine - HCl/0.1 M EDTA, pH 5.8. The proteoglycans were purified and fractionated by cesium chloride density gradient ultracentrifugation under associative and dissociative conditions. Gel chromatography on Sepharose 2 B of proteoglycan fractions from associative centrifugations showed the presence of both aggregated and monomer proteoglycans. The ratio of aggregates to monomers was higher in the second extract than in the other two extracts. Dissociative gradient centrifugation gave a similar distribution for proteoglycans from all three extracts. Thus, with decreasing buoyant density there were decreasing ratios of polysaccharide to protein, and of chondroitin sulfate to keratan sulfate. In addition, there was with decreasing density an increasing ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. Amino acid analyses of dissociative fractions were inaccordance with previously published results. On comparing proteoglycan monomers of the three extracts, significant differences were found. Proteoglycans, extracted at low ionic strength, contained lower proportions of protein, keratan sulfate, chondroitin 6-sulfate and basic amino acids than those of the second extract. The proteoglycans of the third extract also differed from those of the other extracts. The results indicate that the proteoglycans of guinea-pig costal cartilage exist as a very polydisperse and heterogenous population of molecules, exhibiting variations in aggregation capacity, molecular size, composition of protein core, degree of substitution of the protein core, as well as variability in the type of polysaccharides substituted.  相似文献   

7.
Circular dichroism spectroscopy has been used to study the interactions of hyaluronic acid, heparitin sulfate, and keratan sulfate with cationic polypeptides. The results indicate that the presence of these mucopolysaccharides has an effect in the conformation of poly(L -lysine) and poly(L -arginine), such that the former adopts the “random” form and the latter takes up the α-helical conformation, rather than the “charged coil” form expected at neutral pH. The relative strengths of the interactions can be judged from the melting temperatures above which they are disrupted. Both the stoichiometry and the strength of the interactions depend on the position, number, and type of anionic groups attached to the polysaccharide backbone. Such considerations place the six common mucopolysaccharides in order of increasing strength of interaction: hyaluronic acid < chondroitin 4-sulfate < heparitin sulfate < chondroitin 6-sulfate < keratan sulfate ? dermatan sulfate. These differences should be paralleled by differences in the interaction of the mucopolysaccharides with collagen and fibrous proteins.  相似文献   

8.
Glycosaminoglycans were isolated from the femurs of estrogen-treated male Japanese quail. During the 72 h after the injection of estrogen the incorporation of a 1-h pulse of H235SO4 into keratan sulfate increased more than 100-fold in a pattern corresponding to the production of the induced medullary bone. The rate of incorporation into chondroitin 4-sulfate, the only other glycosaminoglycan detected, remained constant throughout the same time period. The rate of incorporation of the 1-h pulse of sulfate into chondroitin 4-sulfate and keratan sulfate was the same at 48 h of estrogen treatment. When birds (48 h estrogen) were allowed to live 6 h after the injection of the isotope, chondroitin 4-sulfate accumulated 5-fold over that found for similar animals labeled for only 1 h. Keratan sulfate, into which the isotope was incorporated at the same rate as the chondroitin sulfate in this experiment, did not accumulate much more in 6 h of labeling than in 1 h of labeling. This suggests that the keratan sulfate turns over more rapidly than the chondroitin 4-sulfate in this tissue. Autoradiography showed that the chondroitin 4-sulfate was associated mainly with the marrow cells near the cortical bone and the keratan sulfate with the newly synthesized medullary bone. These results suggest that keratan sulfate is a specific marker for this secondary bone matrix.  相似文献   

9.
1. Two proteoglycans isolated from the femurs of quail actively producing medullary bone were separated using DEAE Bio-Gel A. 2. The first to elute in the gradient was a keratan sulfate proteoglycan with an average buoyant density of 1.53 g/ml and a Kav = 0.57 on Sepharose CL-4B. 3. The second proteoglycan to elute contained chondroitin 4-sulfate. 4. Apparently only the keratan sulfate proteoglycan is associated with the new medullary bone matrix.  相似文献   

10.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

11.
Hydrazinolysis of glycosaminoglycans to bring about N-deacetylation followed by nitrous acid treatment to effect deaminative cleavage at alternating hexosamine residues has been used to make possible identification and quantitation of disaccharide sequences and position of O-sulfate substitution in nanogram amounts of these polymers. After radiolabeling by NaB3H4 reduction the hydrazine-nitrous acid products were fractionated on Dowex 1 and further resolved by thin-layer chromatography into disaccharides terminating in either sulfated or unsulfated anhydromannitol or anhydrotalitol. Fragmentation of hyaluronic acid, keratan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and heparin yielded a total of 14 disaccharides comprising the major sequences (greater than 1 mol%) occurring in mammalian glycosaminoglycans. Disaccharides representing the predominant variants of the chondroitin sulfates [GlcUA beta 1----3anhydrotalitol(4-SO4) and GlcUA beta 1----3anhydrotalitol(6-SO4)] as well as of dermatan sulfate chains [IdUA alpha 1----3anhydrotalitol(4-SO4) and GlcUA beta 1----3anhydrotalitol(4-SO4)] chains could readily be quantitated by this approach. In the case of heparin a comparison of the disaccharides produced by direct nitrous acid and hydrazine-nitrous acid treatments moreover provided an assessment of the distribution of N-sulfate groups. The characterization of the various disaccharides by Smith periodic acid degradation and glycosidase digestions was facilitated by the preparation and thin-layer chromatographic resolution of the complete series of monosulfated derivatives of anhydromannitol and anhydrotalitol; the sulfate esters were shown to be stable to both the hydrazine and nitrous acid treatments. The high sensitivity of the hydrazine-nitrous acid fragmentation procedure should prove useful in the structural elucidation of cell surface and basement membrane proteoglycans as well as other sulfated glycoconjugates which are present in small amounts.  相似文献   

12.
Heparan sulfate, keratan sulfate, chondroitin, chondroitin 4/6-sulfate (80% 4-sulfate and 20% 6-sulfate), and UDP-N-acetylgalactosamine 4-sulfate were used as acceptors for the measurement of 3'-phosphoadenylyl sulfate: glycosaminoglycan sulfotransferase activities in human serum. Chromatographic fractionation of the serum followed by determination of the sulfotransferase activities demonstrated the existence of at least four different sulfotransferases capable of introducing sulfate to 1) position 6 of the internal N-acetylgalactosamine units of chondroitin, 2) position 6 of the nonreducing terminal N-acetylgalactosamine 4-sulfate unit of chondroitin 4/6-sulfate, 3) position 2 (amino group) of the glucosamine units in heparan sulfate, and 4) the sugar units in keratan sulfate, respectively. The fourth activity was separated into two subfractions with different specificities for the structure of neighboring sugars of the sulfate-accepting sugar units. No major variations in the sulfotransferase activities on added receptors were found to occur in sera from individuals 22-41 years old. In contrast, the activities in sera of various mammalian and avian species showed a species-specific variation. With mouse skin fibroblasts cultured in serum-free medium, preferential secretion of several sulfotransferases could be demonstrated. The results, taken together, suggest that the appearance of the sulfotransferases in serum is not a fortuitous event due to nonspecific cell death, but the result of an elaborate mechanism for enzyme secretion by a cell or tissue system.  相似文献   

13.
A 6-sulfatase specific for sugasr of the galactose configuration was purified 81-fold from the crude extract of Actinobacillus sp. IFO-13310. This preparation contained activity towards both N-acetylgalactosamine 6-sulfate and galactose 6-sulfate (relative activity, 2.4 : 1). The enzyme also release inorganic sulfate from the non-reducing galactose 6-sulfate end group of a trisaccharide disulfate prepared from keratan sulfate by sequential degradation with endo-beta-galactosidase, N-acetylglucosamine-6-sulfatase and exo-beta-N-acetylglucosaminidase. In addition, a tetrasaccharide trisulfate bearing the non-reducing N-acetylglucosamine 6-sulfate end group, also enzymatically prepared from keratan sulfate, was degraded to give rise to inorganic sulfate, N-acetylglucosamine and galactose by the sequential action of this enzyme, N-acetylglucosamine-6-sulfatase, exo-beta-N-acetylglucosaminidase and exo-beta-galactosidase (Charonia lampas).  相似文献   

14.
We have previously found that the purified chondroitin 6-sulfotransferase(C6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate(PAPS) to position 6 of N-acetylgalactosamine in chondroitin,catalyzed the sulfation of keratan sulfate, and that both theC6ST activity and the keratan sulfate sulfotransferase (KSST)activity were expressed in COS-7 cells when C6ST cDNA was transfected.In this report we describe some properties of the KSST activitycontained in the purified C6ST, and characterize the sulfatedproducts formed from keratan sulfate and partially desulfatedkeratan sulfate. Optimal pH, requirement for cationic activators,and Km value for PAPS of the KSST activity were very similarto those of the C6ST activity. 35S-Labeled glycosaminoglycansformed from keratan sulfate and partially desulfated keratansulfate were N-deacetylated by treatment with hydrazine/hydrazinesulfate and then cleaved with HNO2 at pH 4, and the resultingproducts were reduced with NaB3H4. Analysis of the degradationproducts with paper chromatography and high performance liquidchromatography provided evidence that C6ST transferred sulfateto position 6 of galactose residue which was glycosidicallylinked to N-acetylglucosamine 6-sulfate residue or to N-acetylglucosamineresidue. Northern blot analysis using poly (A)+ RNA from 12-d-oldchick embryos indicated that the message of C6ST was expressednot only in the cartilage but also in the cornea in which keratansulfate is actively synthesized. chondroitin sulfate keratan sulfate glycosaminoglycan sulfotransferase hydrazinolysis deaminative cleavage  相似文献   

15.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

16.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate in chondroitin sulfate and dermatan sulfate, was purified 19,600-fold to apparent homogeneity from the squid cartilage. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed a broad protein band with a molecular mass of 63 kDa. The protein band coeluted with GalNAc4S-6ST activity from Toyopearl HW-55 around the position of 66 kDa, indicating that the active form of GalNAc4S-6ST may be a monomer. The purified enzyme transferred sulfate from PAPS to chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate. The transfer of sulfate to chondroitin sulfate A and dermatan sulfate occurred mainly at position 6 of the internal N-acetylgalactosamine 4-sulfate residues. Chondroitin sulfate E, keratan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin were not efficient acceptors of the sulfotransferase. When a trisaccharide or a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine was used as acceptor, efficient sulfation of position 6 at the nonreducing terminal N-acetylgalactosamine 4-sulfate residue was observed.  相似文献   

17.
The physiological relevance of the ability of beta-N-acetylhexosaminidase A to liberate N-acetylglucosamine 6-sulfate from polymeric keratan sulfate was investigated. Upon intravenous injection into rats of [35S]sulfate-labeled proteokeratan sulfate up to 25% of the radioactivity excreted with the urine were identified as N-acetyl-glucosamine 6-sulfate. Within 24 h, however, excretion of inorganic sulfate rose at the expense of the sulfated monosaccharide. Upon incubation in vitro of liver lysosomes from rats treated with proteokeratan sulfate, inorganic sulfate and minor amounts of sulfated monosaccharide were found in the incubation fluid. Cultured rat peritoneal macrophages ingested proteokeratan sulfate with a clearance rate of 6-9 micrograms X h-1 X mg cell protein-1 and degraded it rapidly. Inorganic sulfate but not N-acetylglucosamine 6-sulfate was delivered to the culture medium. During a chase period the amount of intracellular N-acetylglucosamine 6-sulfate fell, and a corresponding amount of sulfate could be found extracellularly. Significant amount of N-acetylglucosamine 6-sulfate were only found in the culture medium when the cells were challenged with zymosan. These results suggest that N-acetylglucosamine 6-sulfate is a physiological intermediate during the degradation of keratan sulfate, but is usually hydrolyzed intralysosomally by N-acetylglucosamine-6-sulfate sulfatase. Genetic deficiency of the sulfatase in humans therefore results in excessive excretion of the sulfated amino sugar but not of keratan sulfate.  相似文献   

18.
The differences in the interaction in solution of poly(l-lysine) with chondroitin 6-sulfate (chondroitin sulfate C) and with chondroitin 4-sulfate (chondroitin sulfate A) have been studied by circular dichroism spectroscopy. Both mucopolysaccharides force the poly(l-lysine) to adopt the α-helix in solution rather than the charged coil form expected at neutral pH. The observed spectra indicates that the polypeptide is at least 80% helical when the 6-sulfate form is present, but only about 20% α-helical in the presence of chondroitin 4-sulfate. Thus chondroitin66-sulfate has a stronger conformation directing effect on poly(l-lysine) than does the 4-sulfate, which is probably due to the different positions of the sulfate group on the polysaccharide c chain.  相似文献   

19.
Heparan sulfate (HS), a prominent component of vascular endothelial basal lamina, is cleaved into large Mr fragments and solubilized from subendothelial basal lamina-like matrix by metastatic murine B16 melanoma cells. We have examined the degradation products of HS and other purified glycosaminoglycans produced by B16 cells. Glycosaminoglycans 3H-labeled at their reducing termini or metabolically labeled with [35S]sulfate were incubated with B16 cell extracts in the absence or presence of D-saccharic acid 1,4-lactone, a potent exo-beta-glucuronidase inhibitor, and glycosaminoglycan fragments were analyzed by high speed gel permeation chromatography. HS isolated from bovine lung, Engelbreth-Holm-Swarm sarcoma, and subendothelial matrix were degraded into fragments of characteristic Mr, in contrast to hyaluronic acid, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan sulfate, keratan sulfate, and heparin which were essentially undegraded. Heparin, but not other glycosaminoglycans, inhibited HS degradation. The time dependence of HS degradation into particular Mr fragments indicated that HS was cleaved at specific intrachain sites. In order to determine specific HS cleavage points, HS prereduced with NaBH4 was incubated with a B16 cell extract and HS fragments were separated. The newly formed reducing termini of HS fragments were then reduced with NaB[3H]4, and the fragments hydrolyzed to monosaccharides by trifluoroacetic acid treatment and nitrous acid deamination. Since 3H-reduced terminal monosaccharides from HS fragments were overwhelmingly (greater than 90%) L-gulonic acid, the HS-degrading enzyme responsible is an endoglucuronidase (heparanase).  相似文献   

20.
Monoclonal antibodies produced against chick embryo limb bud proteoglycan (PG-M) were selected for their ability to recognize determinants on intact chondroitin sulfate chains. One of these monoclonal antibodies (IgM; designated MO-225) reacts with PG-M, chick embryo cartilage proteoglycans (PG-H, PG-Lb, and PG-Lt), and bovine nasal cartilage proteoglycan, but not with Swarm rat chondrosarcoma proteoglycan. The reactivity of PG-H to MO-225 is not affected by keratanase digestion but is completely abolished after chondroitinase digestion. Competitive binding analyses with various glycosaminoglycan samples indicate that the determinant recognized by MO-225 resides in a D-glucuronic acid 2-sulfate(beta 1----3)N-acetylgalactosamine 6-sulfate disaccharide unit (D-unit) common to antigenic chondroitin sulfates. A tetrasaccharide trisulfate containing D-unit at the reducing end is the smallest chondroitin sulfate fragment that can inhibit the binding of the antibody to PG-H. Decreasing the size of a D-unit-rich chondroitin sulfate by hyaluronidase digestion results in progressive reduction in its inhibitory activity. The results suggest that the epitope has a requirement for a long stretch of a disaccharide-repeating structure for a better fit to the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号