首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potent inhibitory action of red wine polyphenols on human breast cancer cells   总被引:14,自引:0,他引:14  
Breast cancer (one of the most common malignancy in Western societies), as well as esophagus, stomach, lung, bladder, and prostate cancer, depend on environmental factors and diet for growth and evolution. Dietary micronutriments have been proposed as effective inhibitory agents for cancer initiation, progression, and incidence. Among them, polyphenols, present in different foods and beverages, have retained attention in recent years. Red wine is a rich source of polyphenols, and their antioxidant and tumor arresting effects have been demonstrated in different in vitro and in vivo systems. In the present study, we have measured the antiproliferative effect of red wine concentrate, its total polyphenolic pool, and purified catechin, epicatechin, quercetin, and resveratrol, which account for more than 70% of the total polyphenols in red wine, on the proliferation of hormone sensitive (MCF7, T47D) and resistant (MDA-MB-231) breast cancer cell lines. Our results indicate that polyphenols, at the picomolar or the nanomolar range, decrease cell proliferation in a dose- and a time-dependant manner. In hormone sensitive cell lines, a specific interaction of each polyphenol with steroid receptors was observed, with IC(50)s lower than previously described. Interaction of polyphenols with steroid receptors cannot fully explain their inhibitory effect on cell proliferation. In addition, discrete antioxidant action on each cell line was detected under the same concentrations, both by modifying the toxic effect of H(2)O(2), and the production of reactive oxygen species (ROS), after phorbol ester stimulation. Our results suggest that low concentrations of polyphenols, and consecutively, consumption of wine, or other polyphenol-rich foods and beverages, could have a beneficial antiproliferative effect on breast cancer cell growth.  相似文献   

2.
The effects of naturally-occuring polyphenols, resveratrol and quercetin, on cell viability and apoptosis were studied in Namalwa B-cell lymphoma line. Apoptotic cells were identified using DNA flow cytometric analysis and 1H NMR spectroscopy. The effects of the agents on the cell cycle kinetics and activation of caspase-3 were examined. Both resveratrol and quercetin induced apoptosis in Namalwa cells as demonstrated by the increased number of hypodiploid cells, elevated level of mobile lipid domains and caspase-3 activation. Treatment with 40 microM of resveratrol for 48 h resulted in time-dependent cell-cycle arrest at G0/G1. In contrast, upon quercetin treatment Namalwa cells accumulated in G2/M. Obtained results suggest that resveratrol and quercetin induced caspase-dependent apoptosis in human malignant lymphoid cells in vitro. These findings provide a rationale for further studies of in vivo effects of those polyphenols.  相似文献   

3.
Interaction of the breast cancer resistance protein with plant polyphenols   总被引:8,自引:0,他引:8  
Multidrug transporters influence drug distribution in vivo and are often associated with tumour drug resistance. Here we show that plant-derived polyphenols that interact with P-glycoprotein can also modulate the activity of the recently discovered ABC transporter, breast cancer resistance protein (BCRP/ABCG2). In two separate BCRP-overexpressing cell lines, accumulation of the established BCRP substrates mitoxantrone and bodipy-FL-prazosin was significantly increased by the flavonoids silymarin, hesperetin, quercetin, and daidzein, and the stilbene resveratrol (each at 30 microM) as measured by flow cytometry, though there was no corresponding increase in the respective wild-type cell lines. These compounds also stimulated the vanadate-inhibitable ATPase activity in membranes prepared from bacteria (Lactococcus lactis) expressing BCRP. Given the high dietary intake of polyphenols, such interactions with BCRP, particularly in the intestines, may have important consequences in vivo for the distribution of these compounds as well as other BCRP substrates.  相似文献   

4.
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.  相似文献   

5.
The aim was to study the antioxidant properties of four wine polyphenols (flavonoids catechin, epicatechin, and quercetin, and hydroxystilbene resveratrol). All three flavonoids exerted significant and dose-dependent scavenging effects against peroxyl radical and nitric oxide in chemical systems. The scavenging effect of resveratrol was significantly lower. All polyphenols decreased production of reactive oxygen species (ROS) by RAW264.7 macrophages. Only quercetin quenched ROS produced by lipopolysaccharide-stimulated RAW264.7 macrophages incubated for 24 h with polyphenols. Quercetin and resveratrol decreased the release of nitric oxide by these cells in a dose-dependent manner which corresponded to a decrease in iNOS expression in the case of quercetin. In conclusion, the higher number of hydroxyl substituents is an important structural feature of flavonoids in respect to their scavenging activity against ROS and nitric oxide, while C-2,3 double bond (present in quercetin and resveratrol) might be important for inhibition of ROS and nitric oxide production by RAW 264.7 macrophages.  相似文献   

6.
Ratna WN  Simonelli JA 《Life sciences》2002,70(13):1577-1589
Hepatic expression of apolipoprotein (apo) II is in part modulated by estrogen-mediated stabilization of its mRNA. This stabilization is due to the estrogen-regulated mRNA stabilizing factor (E-RmRNASF) expressed in the liver in response to estrogen (Ratnasabapathy, 1995, Cell. Mol. Biol. Res, 41: 583-594). E-RmRNASF protects the RNA from targeted endonucleolytic degradation. The hepatic expression of E-RmRNASF is modulated by certain estrogenic and antiestrogenic nonsteroidal environmental xenobiotics (Ratnasabapathy et al. 1997, Biochem. Pharmacol., 53: 1425-1434). To determine whether dietary phytochemicals purported to prevent hormone-dependent breast and prostate cancers, and atherosclerosis, acted via the estrogen-cell-signaling pathway, roosters were administered increasing doses up to 1 mmole/kg of resveratrol, quercetin, catechin or naringenin parenterally and tested for hepatic expression of E-RmRNASF. Besides estrogen, the expression of E-RmRNASF in the liver was stimulated by resveratrol and catechin, indicating these agents to be estrogenic. A lack of E-RmRNASF expression was seen with the roosters treated with the vehicle, naringenin or quercetin. To determine whether the agents exerted partial agonistic or antagonistic effects, roosters were administered combinations of estrogen and increasing doses of the above phytochemicals. Resveratrol showed agonistic activity at all concentrations (10-1000 micromol/kg) tested. Catechin showed partial agonistic activity, while quercetin and naringenin appeared to be antagonistic.  相似文献   

7.
BackgroundEpidemiological studies has revealed that a diet rich in fruits and vegetables could lower the risk of certain cancers. In this setting, natural polyphenols are potent anticancer bioactive compounds to overcome the non-target specificity, undesirable cytotoxicity and high cost of treatment cancer chemotherapy.PurposeThe review focuses on diverse classifications of the chemical diversity of dietary polyphenol and their molecular targets, modes of action, as well as preclinical and clinical applications in cancer prevention.ResultsThe dietary polyphenols exhibit chemo-preventive activity through modulation of apoptosis, autophagy, cell cycle progression, inflammation, invasion and metastasis. Polyphenols possess strong antioxidant activity and control multiple molecular events through activation of tumor suppressor genes and inhibition of oncogenes involved in carcinogenesis. Numerous in vitro and in vivo studies have evidenced that these dietary phytochemicals regulate critical molecular targets and pathways to limit cancer initiation and progression. Moreover, natural polyphenols act synergistically with existing clinically approved drugs. The improved anticancer activity of combinations of polyphenols and anticancer drugs represents a promising perspective for clinical applications against many human cancers.ConclusionThe anticancer properties exhibited by dietary polyphenols are mainly attributed to their anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic and autophagic effects. Hence, regular consumption of dietary polyphenols as food or food additives or adjuvants can be a promising tactic to preclude adjournment or cancer therapy.  相似文献   

8.
Epidemiological evidence has associated exposure to arsenic (As) in drinking water with an increased incidence of human cancers in the skin, bladder, liver, kidney and lung. Sodium arsenite mimics the effects of estradiol and induces cell proliferation in the estrogen responsive breast cancer cell line MCF-7. Therefore, our aim was to further explore the ability of sodium arsenite to induce MCF-7 epithelial breast cell proliferation and some of its underlying mechanisms by studying ROS production, c-Myc and HO-1 protein levels, 8-OHdG formation and NF-kappaB activation. Low arsenite concentrations (0.5-5 microM) induced ROS production and ROS-related depolarization of the mitochondrial membrane suggesting that mitochondria played an important role in the oxidative effects of As. ROS-mediated DNA damage as measured by the presence of 8-OHdG DNA-adducts in their nuclei, IkappaB phosphorylation, NF-kappaB activation and increases in c-Myc and HO-1 protein levels were also observed, suggesting that these factors play a relevant role in the arsenite induced MCF-7 cell recruitment into the S-phase of the cell cycle and cell proliferation observed. In conclusion, arsenite activates several pathways involved in MCF-7 cell proliferation suggesting that arsenite exposure may pose a risk for breast cancer in human exposed populations notwithstanding that most studies to date have not yet implicated this metalloid as a cofactor in the etiology of this disease.  相似文献   

9.
Breast cancer is one of the major malignancies threatening women's health worldwide, and chemotherapy tolerance has become a severe limitation of clinical treatment. Recent findings have revealed that resveratrol, as a dietary agent with antitumour activity, could prevent cancer progression by regulating microRNAs (miRNAs). Additionally, dysregulated miRNAs have been found to contribute significantly to chemoresistance by an increasing number of studies. In this study, experiments were designed to study the functional role of resveratrol in MCF-7 cells (low-invasive breast cancer) in chemosensitivity to adriamycin and to determine the targeted miRNAs of resveratrol and their key target proteins linked to cell activity. We demonstrated that in resveratrol-induced chemosensitivity, cell cycle and apoptosis were arrested in adriamycin-resistant breast cancer cells after modulation of the critical suppresser, miR-122-5p. Further miRNA modulation with miR-122-5p mimics or miR-122-5p inhibitors indicated a major effect of miR-122-5p on the regulation of key antiapoptotic proteins (B-cell lymphoma 2 [Bcl-2]) and cyclin-dependent kinases (CDK2, CDK4, and CDK6) in drug-resistant breast cancer cells in response to resveratrol. In conclusion, our results indicate that resveratrol acts as a potential inducer to enhance the chemosensitivity of breast cancer and also suggest that miR-122-5p is involved in the pathway of cell-cycle arrest by targeting Bcl-2 and CDKs.  相似文献   

10.
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT2 Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.  相似文献   

11.
Hepatocellular carcinoma (HCC) constitutes a predominant part of primary liver cancer which ranks as the fifth most common cancer as well as the third most common cause of cancer mortality. In view of the poor prognosis of unresectable liver cancers, it is of pivotal importance to develop novel chemotherapeutical regimens. RNase MC2 is a 14-kDa ribonuclease isolated from dietary bitter gourd (Momordica charantia) that manifested antitumor potential against breast cancers. In this study, we investigated the potential application of RNase MC2 on Hep G2 cells. We showed that RNase MC2 inhibited cell proliferation and induced cell apoptosis in both in vitro and in vivo studies. RNase MC2 treatment caused cell cycle arrest predominantly at the S-phase and apoptosis, which is associated with the activation of both caspase-8 and caspase-9 regulated caspase pathways. Our further investigation disclosed that RNase MC2 down-regulated the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic protein Bak. Moreover, the phosphorylation of ERK and JNK was involved in the apoptosis process. Importantly, RNase MC2 significantly suppressed the growth of Hep G2 xenograft-bearing nude mice by inducing apoptosis. This notion is supported by data indicating an increased number of caspase-3- and PARP-positive cells, and TUNEL-positive cells in RNase MC2-treated tumor tissues. In summary, we have revealed the antitumor potential of RNase MC2 toward Hep G2 cells. Considering that bitter gourd is a common dietary component in many countries, this study may help to prompt the clinical application of RNase MC2.  相似文献   

12.
Lee EJ  Min HY  Joo Park H  Chung HJ  Kim S  Nam Han Y  Lee SK 《Life sciences》2004,75(23):2829-2839
Stilbenoids, including resveratrol (3,5,4'-trihydroxy-trans-stilbene) which is a naturally occurring phytoalexin abundant in grapes and several plants, have been shown to be active in inhibiting proliferation and inducing apoptosis in human cancer cell lines. Using resveratrol as the prototype, we have synthesized various analogs and evaluated their growth inhibitory effects in cultured human cancer cells. In the present study, we show that one of the stilbenoids, 3,4,5-trimethoxy-4'-bromo-cis-stilbene (BCS), was more effective than its corresponding trans-isomer and resveratrol on the inhibition of cancer cell growth. Prompted by the strong growth inhibitory activity of BCS (IC50; 0.03 microM) compared to its trans-isomer (IC50; 6.36 microM) and resveratrol (IC50; 33.0 microM) in cultured human lung cancer cells (A549), we investigated its mechanism of action. BCS induced arrest at the G2/M phase cell cycle in the early time and subsequently increased in the sub-G1 phase DNA contents in a time-dependent manner, indicating induction of apoptosis. Morphological observation with round-up shape and DNA fragmentation was also revealed the apoptotic phenomena. BCS treatment elevated the expression levels of the pro-apoptotic protein p53, the cyclin-dependent kinase inhibitor p21, and the release of cytochrome c in the cytosol. The down-regulation of checkpoint protein cyclin B1 by BCS was well correlated with the cell cycle arrest at G2/M. These data suggest the potential of BCS to serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and induction of apoptosis of human lung cancer cells.  相似文献   

13.
Circular RNAs (circRNAs) can participate in multiple cancers, including breast cancer. Increasing circRNAs are recognized in various cancers because of the high-throughput sequencing. However, the potential physiological effect of hsa_circ_0136666 in breast cancer progression is unknown. In our study, the biological role of hsa_circ_0136666 in breast cancer development was studied. It was displayed that hsa_circ_0136666 was greatly increased in breast cancer. In addition, overexpression of hsa_circ_0136666 was able to promote Michigan Cancer Foundation-7 (MCF7) and BT474 cell proliferation and triggered cell cycle in G2/M phase. microRNA plays critical role in tumor development and they can act as direct targets of circRNAs. miR-1299 has been implicated as a famous tumor suppressor in many cancers. Here, miR-1299 was predicted as the target of hsa_circ_0136666. Meanwhile, its Upregulation repressed breast cancer proliferation, migration and invasion capacity, which could be reversed by the increase of hsa_circ_0136666. Furthermore, Cyclin-dependent kinase 6 (CDK6) was speculated as the downstream target of miR-1299. In MCF7 and BT474 cells, CDK6 was greatly overexpressed and it was shown that CDK6 contributed a lot to breast cancer progression. Subsequently, it was implied that hsa_circ_0136666 could modulate CDK6 levels positively in vitro. In conclusion, it was revealed that Upregulation of hsa_circ_0136666 promoted breast cancer progression by sponging miR-1299 and targeting CDK6.  相似文献   

14.
Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers. Pituitary type GHRH receptors and their splice variants are also expressed in these malignancies. Synthetic antagonists of the GHRH receptor inhibit proliferation of cancers. Besides direct inhibitory effects on tumors, GHRH antagonists also enhance cytotoxic chemotherapy. GHRH antagonists potentiate docetaxel effects on growth of H460 non-small cell lung cancer (NSCLC) and MX-1 breast cancer plus suppressive action of doxorubicin on MX-1 and HCC1806 breast cancer. We investigated mechanisms of antagonists on tumor growth, inflammatory signaling, doxorubicin response, expression of drug resistance genes, and efflux pump function. Triple negative breast cancer cell xenografted into nude mice were treated with GHRH antagonist, doxorubicin, or their combination. The combination reduced tumor growth, inflammatory gene expression, drug-resistance gene expression, cancer stem-cell marker expression, and efflux-pump function. Thus, antagonists increased the efficacy of doxorubicin in HCC1806 and MX-1 tumors. Growth inhibition of H460 NSCLC by GHRH antagonists induced marked downregulation in expression of prosurvival proteins K-Ras, COX-2, and pAKT. In HT-29, HCT-116 and HCT-15 colorectal cancer lines, GHRH antagonist treatment caused cellular arrest in S-phase of cell cycle, potentiated inhibition of in vitro proliferation and in vivo growth produced by S-phase specific cytotoxic agents, 5-FU, irinotecan and cisplatin. This enhancement of cytotoxic therapy by GHRH antagonists should have clinical applications.  相似文献   

15.
《Chronobiology international》2013,30(7):1323-1339
Cell cycle progression is tightly regulated. The expressions of cell cycle regulators, the products of which either promote or inhibit cell proliferation, oscillate during each cell cycle. Cellular proliferation and the expression of cell cycle regulators are also controlled by the circadian clock. Disruption of the circadian clock may thereby lead to deregulated cell proliferation. Mammalian Per2 is a core clock gene, the product of which suppresses cancer cell proliferation and tumor growth in vivo and in vitro. Because Per1, another key clock gene, is mutated in human breast cancers, and because its clock functions are similar and complementary to those of Per2, we have studied its role in modulating breast cancer cell proliferation and tumor growth. We find that breast cancer growth rate is gated by the circadian clock with two daily peaks and troughs, and that they are coupled to the daily expression patterns of clock-controlled genes that regulate cell proliferation. Down-regulation of the expression of tumor Per1 increases cancer cell growth in vitro and tumor growth in vivo by enhancing the circadian amplitude of the two daily tumor growth peaks. The data of the study suggest Per1 has tumor-suppressor function that diminishes cancer proliferation and tumor growth, but only at specific times of day. (Author correspondence: ).  相似文献   

16.
槲皮素对前列腺癌细胞增殖及转录因子Sp1功能的抑制作用   总被引:9,自引:0,他引:9  
雄激素受体(androgenreceptor,AR)作为核转录因子,其高表达、基因突变以及AR辅激活因子的过表达等造成AR的异常激活与前列腺癌细胞的增殖、恶化转移、多药耐药等密切相关.天然黄酮槲皮素(quercetin),是一很有潜力的预防和治疗前列腺肿瘤的化合物.槲皮素不仅抑制前列腺癌细胞LNCaP的增殖,并呈剂量依赖性,而且下调前列腺癌中AR的表达、抑制AR的转录激活功能.GCbox是AR核心启动子的主要正调控元件,是转录因子Sp1的结合位点.细胞转染结果表明,槲皮素能抑制Sp1蛋白对AR启动子的激活作用,可能是槲皮素下调AR表达的机理之一.进一步研究显示,槲皮素还能明显抑制Sp1蛋白对AR转录激活功能的增强作用.Western印迹结果显示,槲皮素对Sp1蛋白表达无明显影响,但能够诱导c-Jun的高表达,而高表达的c-Jun蛋白能逆转Sp1蛋白对AR的转录激活作用,由此推测,槲皮素可能通过介导c-Jun与Sp1的蛋白质相互作用,抑制Sp1的功能,进而起到抑制AR表达和功能的作用.免疫沉淀结果又进一步证实了Sp1与c-Jun二者的相互作用.因此,槲皮素可能通过抑制前列腺癌细胞中AR的表达和功能抑制了细胞的增殖,其分子机理可能与槲皮素诱导的c-Jun与Sp1蛋白相互作用、降低Sp1对AR的转录激活作用有关.  相似文献   

17.
Resveratrol, a naturally occurring polyphenolic compound, has been reported to exert anticancer activity by affecting diverse molecular targets. In this study, we examined the effects and the underlying mechanisms of resveratrol on gastric cancer. We found that resveratrol inhibited the proliferation of gastric cancer cells in a dose-dependent manner. At the concentration of 25 and 50 µM, resveratrol inhibited the cell viability and diminished the clonogenic potential of gastric cancer cells. Resveratrol treatment arrested gastric cancer cells in the G1 phase and led to senescence instead of apoptosis. Regulators of the cell cycle and senescence pathways, including cyclin D1, cyclin-dependent kinase (CDK4 and 6), p21 and p16, were dysregulated by resveratrol treatment. The inhibitory effects of resveratrol on gastric cancer were also verified in vivo using a nude mice xenograft model. Resveratrol (40 mg/kg/d) exerted inhibitory activities on gastric cancer development and significantly decreased the fractions of Ki67-positive cells in the tumor specimens from the nude mice. After resveratrol treatment, the induction of senescence and the changes in the expression of the regulators involved in the cell cycle and senescence pathways were similar to what we observed in vitro. However, the depletion of Sirtuin (Sirt)1 reversed the above-described effects of resveratrol both in vitro and in vivo. Our data suggest that resveratrol inhibits gastric cancer in a Sirt1-dependent manner and provide detailed evidence for the possibility of applying resveratrol in gastric cancer prevention and therapy.  相似文献   

18.
Recently, long noncoding RNAs (lncRNAs) have become the key gene regulators and prognostic biomarkers in various cancers. Through microarray data, Linc00339 was identified as a candidate oncogenic lncRNA. We compared the expression levels of Linc00339 in several breast cancer cell lines and normal mammary gland epithelial cell line. The effects of Linc00339 on tumor progression were examined both in vitro and in vivo. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were applied to evaluate the functions of Linc00339, miR-377-3p, and HOXC6 on cell proliferation. Flow cytometry analysis was used to detect apoptosis and cell cycle distribution. Overall survival (OS) was analyzed using data from The Cancer Genome Atlas and molecular taxonomy of breast cancer international consortium (METABRIC). Dual luciferase assay and RNA immunoprecipitation were performed to confirm the interaction between Linc003339 and miR-377-3p. Linc00339 was increased in breast cancer cell lines compared with the normal epithelial cell. Through in vitro and in vivo experiments, Linc00339 overexpression promoted triple-negative breast cancer (TNBC) proliferation, inhibited cell cycle arrest, and suppressed apoptosis. Silencing of Linc00339 obtained the opposite effects. Mechanistic investigations demonstrated that Linc00339 could sponge miR-377-3p and regulate its expression. Higher expression of miR-377-3p indicated longer OS in breast cancer patients, especially in TNBC patients. Overexpression of miR-377-3p retarded TNBC cell growth through regulating cell cycle distribution and apoptosis. And miR-377-3p was involved in Linc00339-mediated TNBC proliferation through regulating HOXC6 expression. Knockdown of HOXC6 inhibited TNBC progression. In conclusion, our results illuminated that the novel Linc00339/miR-377-3p/HOXC6 axis played a critical role in TNBC progression and might be a promising therapeutic target for TNBC treatment.  相似文献   

19.
This study aims to figure out the methylation of long non-coding RNA GAS5 promoter in cervical cancer and the mechanism of GAS5 on the progression of cervical cancer cells. The expression of GAS5 and methylation state of GAS5 in cervical cancer tissues and cells were determined. With the aim to to explore the ability of GAS5 in the proliferation, cell cycle progression, apoptosis, invasion, migration as well as the tumor growth, and metastasis in nude mice were determined. The expression of GAS5 was decreased and methylation state of GAS5 was elevated in cervical cancer. Overexpression of GAS5 inhibited proliferation, cell cycle progression, invasion, migration while inducing apoptosis of cervical cancer cells as well as suppressed tumor growth and metastasis in nude mice. Our study demonstrates that abnormal methylation of GAS5 contributes to poor expression of GAS5 in cervical cancer. In addition, upregulation of GAS5 inhibits the cervical cancer development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号