首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
2.

Aim

This study presents a micrometre-scale map of the elemental distribution within roots and surrounding sediment of Halimione portulacoides of a contaminated salt marsh in the Tagus estuary.

Methods

Microprobe particle induced X-ray emission analysis was performed in sediment slices containing roots with tubular rhizoconcretions attached to host sediments.

Results

Strong concentration gradients were found particularly in the inner part of rhizoconcretions adjacent to the root wall. Local enrichment was observed in sediment interstices with Fe precipitates and other associated elements. A maximum of 55 % of Fe was measured near the concretion–root interface, with a decrease to <5 % in the host sediment. Maximum concentrations of P (3 %), As (1,200 μg g?1) and Zn (3,000 μg g?1) were registered in concretions, one order of magnitude above the values of the host sediment. The elemental concentration profiles across roots showed that the epidermis was an efficient selective barrier to the entrance of elements. Fe and As were retained in the epidermis. The highest Cu and Zn concentrations were also observed in the epidermis. However, the concentrations of Mn, Cu and Zn increased in the inner root.

Conclusions

As and Fe were mostly retained in the concretion, whereas P, Mn, Cu and Zn were mobilised by the root.  相似文献   

3.
A study quantifying the effects of different copper (Cu) concentrations (50, 200, 800 and 1,000 mg kg?1 Cu) on Cu bioaccumulation and physiological responses of Spartina alterniflora was conducted. Plant biomass and Cu accumulation were determined. Plant height, tiller number, chlorophyll, leaf electrolyte leakage rate (ELR), malondialdehyde (MDA), proline, soluble sugar, and organic acids were also measured. The results showed that S. alterniflora mainly accumulated Cu in fine roots. No significant changes of biomass of fine roots were detected except for obvious reduction under 1,000 mg kg?1 Cu. In leaves, rhizomes and fine roots, the highest Cu accumulations were detected under 800 mg kg?1 Cu. The highest Cu accumulation in stem was revealed under 200 mg kg?1 Cu. Plant height decreased under 1,000 mg kg?1 Cu; chlorophyll content reduced under >50 mg kg?1 Cu; levels of ELR and MDA increased under >200 mg kg?1 Cu. However, osmotic components such as proline and soluble sugar were accumulated to cope with higher Cu stresses (800 and 1,000 mg kg?1). Further, oxalic and citric acids were positively related with Cu contents in leaves and stems, suggesting that oxalic and citric acids may be related to Cu detoxification in aboveground parts of S. alterniflora. However, in above and belowground parts, no detoxification function of ascorbic and fumaric acids was observed due to unchanged or decreased trend under Cu stress.  相似文献   

4.
Zinc fertilizer placement affects zinc content in maize plant   总被引:1,自引:0,他引:1  

Background and aims

Adequate zinc (Zn) in maize (Zea mays L.) is required for obtaining Zn-enriched grain and optimum yield. This study investigated the impact of varying Zn fertilizer placements on Zn accumulation in maize plant.

Methods

Two pot experiments with same design were conducted to investigate the effect of soil Zn heterogeneity by mixing ZnSO4·7H2O (10 mg Zn kg?1 soil on an average) in 10–15, 0–15, 25–30, 0–30, 30–60 and 0–60 cm soil layers on maize root growth and shoot Zn content at flowering stage in experiment-1, and assessing effects on grain Zn accumulation at mature stage in experiment-2.

Results

In experiment-1, Zn placements created a large variation in soil DTPA-Zn concentration (0.3–29.0 mg kg?1), which induced a systemic and positive response of root growth within soil layers of 0–30 cm; and shoot Zn content was increased by 102 %–305 % depending on Zn placements. Supply capacity of Zn in soil, defined as sum of product of soil DTPA-Zn concentration and root surface area at different soil layers, was most related to shoot Zn content (r?=?0.82, P?<?0.001) via direct and indirect effects according to path analysis. In experiment-2, Zn placements increased grain Zn concentration by up to 51 %, but significantly reduced the grain Zn harvest index from 50 % by control to about 30 % in average.

Conclusion

Matching the distribution of soil applied Zn with root by Zn placement was helpful to maximize shoot Zn content and grain Zn concentration in maize.  相似文献   

5.

Background

Poplars accumulate inordinate amounts of B in their leaves and are candidate plants for the remediation of B contaminated soil. We aimed to determine the effect of heterogeneous B distribution in soil by comparing the growth and B accumulation of young Populus tremula trees growing in soil with heterogeneous and homogeneous B distributions.

Methods

The first of two experiments focused on the tolerance and B accumulation of P. tremula under heterogeneous soil B distributions, while the second was designed to study fine root growth under such conditions in detail.

Results

Growth and B accumulation of P. tremula were unaffected by the spatial distribution of B. Root and shoot growth were both reduced simultaneously when leaf B concentrations increased above 800 mg kg?1. In the heterogeneous soil B treatments, root growth was more reduced in spiked soil portions with B concentrations >20 mg kg?1. Fine root length growth was stronger inhibited by B stress than secondary growth.

Conclusions

The root growth responses of P. tremula to B are primarily a systemic effect induced by shoot B toxicity and local toxicity effects on roots become dominant only at rather high soil B concentrations. Local heterogeneity in soil B should have little influence on the phytoremediation of contaminated sites.  相似文献   

6.
The objective of this study in 2009 was to examine whether levels of cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb) and chromium (Cr) were higher in the leaves than in the stems of a submerged aquatic plant Ceratophyllum demersum in Anzali wetland. Cadmium, Pb and Cr concentrations were highest in the leaves. The mean concentrations of Cd and Cr in the leaves at all the sampling sites ranged between 0.94–1.26 μg g?1 and 1.03–2.71 μg g?1, respectively. Lead also had its highest concentrations in the leaves. The mean concentration of Pb in the leaves at all sampling sites ranged between 7.49–11.88 μg g?1. Copper and Zn concentrations were highest in the stems. The mean concentrations of Cu and Zn in the stems at all sampling sites ranged between 10.79–17.91 μg g?1 and 19.89–40.01 μg g?1, respectively. Cadmium and Pb concentrations were higher in the leaves than in the stems, while Zn concentration was higher in the stems than in the leaves. Accumulation of Cu and Cr in the organs of C. demersum was in descending order of leaf ~ stem, since there was no significant difference between their mean concentrations in the leaves and stems.  相似文献   

7.

Aims

Along a gradient of diminishing heavy metal (HM) concentrations formed by local inclusions of uranium mine soils into non-contaminated cropland, duplicate 1-m2 plots of 3 winter wheat cvs. (Akteur E, Brilliant A, and Bussard E) were established at 3 positions within a winter rye (cv. Visello) culture. It was the goal to determine permissible soil HM concentrations tolerated by cereal cvs. with variable excluder properties, and regulatory mechanisms which optimize the concentrations of essential minerals and radionuclide analogues in viable seeds from geologically related soils with diverging HM content.

Methods

Total metal concentrations / nitrogen species in soils, shoots, and mature grains were determined by ICP-MS / spectrophotometry, and Kjeldahl analyses.

Results

No non-permissible concentrations in grains of the 4 cereal cvs. were caused by elevated but aged total soil resources (mg kg-1 DW) in As (156); Cu (283); Mn (2,130); Pb (150); and in Zn (3,005) in the case of Bussard although CdCuZn elicited phytotoxicity symptoms. Uranium (41) contaminated grains of Akteur and Brilliant but not of Bussard and Visello due to their excluder properties. The concentration in Cd (41) had to be reduced to 20/2 mg kg-1 for the production by excluder cvs. of fodder/food grains. Cultivars excluding both HM and radionuclide analogues such as BaCsSr synchronously were not identified. Whereas plant tissue concentrations in the metalloprotein-associated elements CdCoCuMnNiZn rise and fall generally with Norg, grains of the wheat cvs. differed too little in Norg to designate variations in their metal acquisition rates solely as protein-regulated. Wheat grains confined nevertheless the concentrations in Cu to 11–14 mg kg-1 although the respective soil concentrations varied by factor 19. Grain deposition in CaFeMn(Zn) and in nuclides followed the same rules.

Conclusions

It is hypothesized that cereals down-/up-regulate grain:soil transfer rates from soils with excessive/deficient trace metal resources to equip viable seeds with an optimum but not maximum in essential minerals. Positive correlations between metal concentrations in planta to those in soil can thereby be lost.  相似文献   

8.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

9.
The effects of indole-3-butyric acid (IBA) alone and in combination with l-arginine on the morphogenic and biochemical responses in shoot tip explants of the cherry rootstock M × M 14 (Prunus avium × Prunus mahaleb) were examined. The maximum root number per rooted explant (16), root fresh (FW) and dry (DW) weights, as well as the rooting percentage (100 %) were recorded when 2 mg l?1 IBA (alone) were applied. Including the lowest IBA concentration (0.5 mg l?1) with the lowest and highest l-arginine concentrations (0.5 and 2 mg l?1, respectively) resulted in the greatest root length. The maximum leaf chlorophyll concentration and shoot length of the initial explant were recorded when 0.5 mg l?1 IBA plus 2 mg l?1 l-arginine were applied. In addition, l-arginine in combination with IBA (1 and 2 mg l?1) was found to suppress shoot FW and DW. On the other hand, l-arginine enhanced the promoting effect of IBA on both root length and leaf chlorophyll concentration. The carbohydrate and proline concentrations in leaves were not significantly altered with the application of IBA alone or in combination with l-arginine. On the other hand, the carbohydrate and proline concentrations in roots were decreased with the application of 1 and 2 mg l?1 IBA with l-arginine, resulting in the suppression of the promoting effects of IBA. It is clear from the findings that l-arginine has a direct effect on the in vitro rooting of M × M 14 explants, is involved in the function of the photosythetic apparatus, influences leaf chlorophyll content, participates in carbohydrate biosynthesis and metabolism, and is involved in proline accumulation both in leaves and roots.  相似文献   

10.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

11.

Background and Aims

The accumulation of cadmium and lead in rice (Oryza sativa L.) grains is a potential threat to human health. In this study, the effect of selenium fertilization on the uptake and translocation of cadmium and lead in rice plants was investigated.

Methods

Rice plants were cultivated using cadmium and lead contaminated soils with selenium addition at three concentrations (0, 0.5 and 1 mg kg?1). At maturity, plants were harvested, and element concentrations in rice tissues were analyzed by using ICP-MS.

Results

Selenium application significantly increased selenium accumulation in rice grain, and markedly decreased cadmium and lead concentrations in rice tissues. In brown rice grains, selenium application reduced cadmium concentrations by 44.4 %, but had no significant effect on lead accumulation. Selenium application significantly decreased metal mobility in soils, at 0.5 mg kg?1 treatment, the translocation factor of cadmium and lead from soil to iron plaque decreased by 71 and 33 % respectively.

Conclusions

The mechanism of selenium mitigating of heavy metal accumulation in rice could be decreasing metal bioavailability in soil. Selenium fertilization could be an effective and feasible method to enrich selenium and reduce cadmium levels in brown rice.  相似文献   

12.

Background and aims

The biotic ligand model (BLM) is a bioavailability model for metals based on the concept that toxicity depends on the concentration of metal bound to a biological binding site; the biotic ligand. Here, we evaluated the BLM to interpret and explain mixture toxicity of metals (Cu and Zn).

Methods

The mixture toxicity of Cu and Zn to barley (Hordeum vulgare L.) was tested with a 4 days root elongation test in resin buffered nutrient solutions. Toxicity of one toxicant was tested in presence or absence of a low effect level of the other toxicant or in a ray design with constant toxicant ratios. All treatments ran at three different Ca concentrations (0.3, 2.2 and 10?mM) to reveal ion interaction effects.

Results

The 50 % effect level (EC50) of one metal, expressed as the free ion in solution, significantly (p?<?0.05) increased by adding a low level effect of the other metal at low Ca. Such antagonistic interactions were smaller or became insignificant at higher Ca levels. The Cu EC10 was unaffected by Zn whereas the Zn EC10 increased by Cu at low Ca. These effects obeyed the BLM combined with the independent action model for toxicants.

Conclusions

The BLM model explains the observed interactions by accounting for competition between both metals free ions and Ca2+ at the Cu and Zn biotic ligands. The implications of these findings for Cu/Zn interactions in soil are discussed.  相似文献   

13.
14.
The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L?1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL?1) at 5 mg mL?1 l-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L?1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.  相似文献   

15.

Backgroud and aims

Plant boron (B) status is known to affect plant secondary metabolites but most studies have been short termed and in controlled environments. Copper (Cu) effects on phenolics are better known at toxic than at low levels. Here, the chemistry of Scots pine (Pinus sylvestris L.) needles was studied 20 years after fertilisation with B and Cu in a long-term field experiment on a drained boreal peatland.

Methods

Phenolic compounds were analysed from three needle year classes using high performance liquid chromatography (HPLC) and condensed tannins with modified acid-butanol assay. Monoterpenes in the youngest needles were analysed by gas chromatography–mass spectrometry (GC–MS).

Results

Needle B concentrations were at deficient level in controls (5.7 μg g?1), but at the optimum level (12 μg g?1) still 20 years after fertilisation. Copper concentrations were low but not deficient (4.0 μg g?1 in unfertilised, 4.8 μg g?1 in fertilised). Needle ageing increased the concentrations of individual phenolics in most cases, but decreased the concentration of condensed tannins. The concentrations of several individual phenolics were reduced by B fertilisation compared to B-deficient control, significantly in the cases of (+)-catechin and a neolignan. The concentrations of eight compounds and the sum of small-molecule phenolics were higher in Cu fertilised trees. Condensed tannins and monoterpenes were not affected by the micronutrients.

Conclusions

Boron and copper additions affected mostly the same phenolic compounds, but B decreased while Cu increased their concentrations, Cu effects being clearer. The higher phenolic concentrations in B deficient trees were not likely large enough to explain leader dieback in B-deficient trees. The effects and interactions of these micronutrients need to be further studied in field conditions to establish firstly if the changes in phenolics are consistent among species, and secondly what mechanisms lead to the changes. Although small, the changes in phenolic concentrations may affect the interactions of the trees with their biotic and abiotic environment, when consistent over many years.  相似文献   

16.

Background and aims

Salt is known to accumulate in the root-zone of Na+ excluding glycophytes under saline conditions. We examined the effect of soil salinity on Na+ and Cl? depletion or accumulation in the root-zone of the halophyte (Atriplex nummularia Lindl).

Methods

A pot experiment was conducted in soil to examine Na+ and Cl? concentrations adjacent to roots at four initial NaCl treatments (20, 50, 200 or 400 mM NaCl in the soil solution). Plant water use was manipulated by leaving plants with all leaves intact, removing approximately 50 % of leaves, or removing all leaves. Daily evapotranspiration was replaced by watering undrained pots to weight with deionised water. After 35-38 days, samples were taken of the bulk soil and of soil loosely- and closely-adhering to the roots.

Results

In plants with leaves intact grown with 200 and 400 mM NaCl, average Na+ and Cl? concentrations in the closely adhering soil were about twice the concentrations of the bulk soil. Ion accumulation increased with final leaf area and with cumulative transpiration over the duration of the trial. By contrast, in plants grown with the lowest salinity treatment (20 mM NaCl), Na+ and Cl? concentrations decreased in the closely adhering soil with increasing leaf area and increasing cumulative water use.

Conclusions

Our data show that Na+ and Cl? are depleted from the root-zone of A. nummularia at low salinity but accumulate in the root-zone at moderate to high salinity, and that the ions are drawn towards the plant in the transpiration stream.  相似文献   

17.

Background and aims

The direct measurement of denitrification dynamics and its product fractions is important for parameterizing process-oriented model(s) for nitrogen cycling in various soils. The aims of this study are to a) directly measure the denitrification potential and the fractions of nitrogenous gases as products of the process in laboratory, b) investigate the effects of the nitrate (NO 3 ? ) concentration on emissions of denitrification gases, and c) test the hypothesis that denitrification can be a major pathway of nitrous oxide (N2O) and nitric oxide (NO) production in calcic cambisols under conditions of simultaneously sufficient supplies of carbon and nitrogen substrates and anaerobiosis as to be found to occur commonly in agricultural lands.

Methods

Using the helium atmosphere (with or without oxygen) gas-flow-soil-core technique in laboratory, we directly measured the denitrification potential of a silt clay calcic cambisol and the production of nitrogen gas (N2), N2O and NO during denitrification under the conditions of seven levels of NO 3 ? concentrations (ranging from 10 to 250 mg N kg?1 dry soil) and an almost constant initial dissolved organic carbon concentration (300 mg C kg?1 dry soil).

Results

Almost all the soil NO 3 ? was consumed during anaerobic incubation, with 80–88 % of the consumed NO 3 ? recovered by measuring nitrogenous gases. The results showed that the increases in initial NO 3 ? concentrations significantly enhanced the denitrification potential and the emissions of N2 and N2O as products of this process. Despite the wide range of initial NO 3 ? concentrations, the ratios of N2, N2O and NO products to denitrification potential showed much narrower ranges of 51–78 % for N2, 14–36 % for N2O and 5–22 % for NO.

Conclusions

These results well support the above hypothesis and provide some parameters for simulating effects of variable soil NO 3 ? concentrations on denitrification process as needed for biogeochemical models.  相似文献   

18.
Abstract

In a greenhouse experiment, plant growth and copper (Cu) and zinc (Zn) uptake by four Salix cultivars grown in Cu and Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The cultivars displayed tolerance to heavily contaminated soils throughout the experiment. After uptake, total mean Cu concentrations in the leaves, shoots and roots in all cultivars and treatments ranged from 163 to 474?mg kg?1 and mean Zn concentrations ranged from 776 to 1823?mg kg?1. Lime and wood ash addition increased dry biomass growth (25–43%), chlorophyll fluorescence (Fv/Fm) values (3–6%), the translocation factor (TF) (15–60% for Cu; 10–25% for Zn), the bio-concentration factor (BCF) (40–85% for Cu; 70–120% for Zn), and metal uptake (55–70% for Cu; 50–65% for Zn) compared to unamended treatment across all cultivars. The results revealed that Salix cultivars have the potential to take up and accumulate significant amounts of Cu and Zn. Cultivar Klara (Salix viminalis × S. schwerinii × S. dasyclados) was found to be the most effective cultivar for phytoextraction since it displayed greater dry biomass production, Fv/Fm, TF, BCF values and uptake percentage rates of Cu and Zn compared to the other three cultivars. This study indicates that further research is needed to clarify the wider phytoextraction capabilities of different Salix cultivars.  相似文献   

19.

Background and aims

The potential use of a metal-tolerant sunflower mutant line for both biomonitoring and phytoremediating a Cu-contaminated soil series was investigated.

Methods

The soil series (21–1,170 mg Cu kg?1) was sampled in field plots at control and wood preservation sites. Sunflowers were cultivated 1 month in potted soils under controlled conditions.

Results

pH and dissolved organic matter influenced Cu concentration in the soil pore water. Leaf chlorophyll content and root growth decreased as Cu exposure rose. Their EC10 values corresponded to 104 and 118 μg Cu L?1 in the soil pore water, 138 and 155 mg Cu kg?1 for total soil Cu, and 16–18 mg Cu kg?1 DW shoot. Biomass of plant organs as well as leaf area, length and asymmetry were well correlated with Cu exposure, contrary to the maximum stem height and leaf water content.

Conclusions

Physiological parameters were more sensitive to soil Cu exposure than the morphological ones. Bioconcentration and translocation factors and distribution of mineral masses for Cu highlighted this mutant as a secondary Cu accumulator. Free Cu2+ concentration in soil pore water best predicted Cu phytoavailability. The usefulness of this sunflower mutant line for biomonitoring and Cu phytoextraction was discussed.  相似文献   

20.

Background and aims

Close regulation of cellular Ca in roots is required in the face of marked changes in soil solution Ca over time and space. This study’s aims were to quantify and gain insights into the ways in which roots respond to changes in solution Ca.

Methods

Root elongation rate (RER) of cowpea (Vigna unguiculata (L.) Walp.) seedlings was determined at 0.05 to 15 mM Ca for up to 24 h both without and with added K, Mg, or Na. Root tip concentrations of Ca, K, Mg, and Na were determined and binding of cations by root tips estimated by subsequent Cu sorption.

Results

Transfer from higher to lower Ca solutions (and with added K at high Ca) resulted in RER?≥?2 mm h?1 within minutes. This was attributed to greater cell wall relaxation through lower Ca binding aided by a decrease to pH?≤?5.1 in solution. Transfer to higher Ca solutions, which remained at ~pH 5.6, led to an equally rapid decrease in RER to ~0.5 mm h?1, an effect ascribed to greater cell wall binding of Ca. Thereafter, a gradual increase in RER to ~1.8 mm h?1 occurred over 24 h, an effect likely due to reduced cell wall Ca binding as shown by decreasing Cu sorption at a rate of 0.027 mmol Cu kg?1 FM h?1 over 24 h.

Conclusion

The kinetics of changes in RER and cations in root tips suggest that roots respond to changes in solution Ca through effects on cell wall relaxation of the rhizodermis and outer cortex in the elongation zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号