首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34–71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C4) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.  相似文献   

2.
A novel lipolytic enzyme was isolated from a metagenomic library after demonstration of lipolytic activity on an LB agar plate containing 1% (w/v) tributyrin. A novel esterase gene (estIM1), encoding a lipolytic enzyme (EstIM1), was cloned using a shotgun method from a pFosEstIM1 clone of the metagenomic library, and the enzyme was characterized. The estIM1 gene had an open reading frame (ORF) of 936 base pairs and encoded a protein of 311 amino acids with a molecular mass 34 kDa and a pI value of 4.32. The deduced amino acid sequence was 62% identical to that of an esterase from an uncultured bacterium (ABQ11271). The amino acid sequence indicated that EstIM1 was a member of the family IV of lipolytic enzymes, all of which contain a GDSAG motif shared with similar enzymes of lactic acid microorganisms. EstIM1 was active over a temperature range of 1–50°C, at alkaline pH. The activation energy for hydrolysis of p-nitrophenyl propionate was 1.04 kcal/mol, within a temperature range of 1–40°C. The activity of EstIM1 was about 60% of maximal even at 1°C, suggesting that EstIM1 is efficiently cold-adapted. Further characterization of this cold-adapted enzyme indicated that the esterase may be very valuable in industrial applications.  相似文献   

3.
Jiang X  Xu X  Huo Y  Wu Y  Zhu X  Zhang X  Wu M 《Archives of microbiology》2012,194(3):207-214
A deep-sea sediment metagenomic library was constructed and screened for lipolytic enzymes by activity-based approach. Nine novel lipolytic enzymes were identified, and the amino acid sequences shared 56% to 84% identity to other lipolytic enzymes in the database. Phylogenetic analysis showed that these enzymes belonged to family IV lipolytic enzymes. One of the lipolytic enzymes, Est6, was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form. The recombinant protein was purified by Ni-nitrilotriacetic affinity chromatography column and characterized using p-nitrophenyl esters with various chain lengths. The est6 gene consisted of 909 bp that encoded 302 amino acid residues. Est6 was most similar to a lipolytic enzyme from uncultured bacterium (ACL67845, 61% identity) isolated from the South China Sea marine sediment metagenome. The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.  相似文献   

4.
5.
In this study, a putative esterase, designated EstMY, was isolated from an activated sludge metagenomic library. The lipolytic gene was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The gene estMY contained a 1,083 bp open reading frame (ORF) encoding a polypeptide of 360 amino acids with a molecular mass of 38 kDa. Sequence analysis indicated that it showed 71% and 52% amino acid identity to esterase/lipase from marine metagenome (ACL67845) and Burkholderia ubonensis Bu (ZP_02382719), respectively; and several conserved regions were identified, including the putative active site, GDSAG, a catalytic triad (Ser203, Asp301, and His327) and a HGGG conserved motif (starting from His133). The EstMY was determined to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤C8). This EstMY exhibited the highest activity at 35°C and pH 8.5 respectively, by hydrolysis of p-NP caprylate. It also exhibited the same level of activity over wide temperature and pH spectra and in the presence of metal ions or detergents. The high level of stability of esterase EstMY with unique substrate specificities makes it highly valuable for downstream biotechnological applications.  相似文献   

6.
7.
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K m value of 0.88 mmol/L, a k cat value of 212/min, and a k cat/K m value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl3, CuCl2, and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.  相似文献   

8.
A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications.  相似文献   

9.
A novel, cold-active and highly alkaliphilic esterase was isolated from an Antarctic desert soil metagenomic library by functional screening. The 1,044 bp gene sequence contained several conserved regions common to lipases/esterases, but lacked clear classification based on sequence analysis alone. Moderate (<40%) amino acid sequence similarity to known esterases was apparent (the closest neighbour being a hypothetical protein from Chitinophaga pinensis), despite phylogenetic distance to many of the lipolytic “families”. The enzyme functionally demonstrated activity towards shorter chain p-nitrophenyl esters with the optimal activity recorded towards p-nitrophenyl propionate (C3). The enzyme possessed an apparent Topt at 20°C and a pH optimum at pH 11. Esterases possessing such extreme alkaliphily are rare and so this enzyme represents an intriguing novel locus in protein sequence space. A metagenomic approach has been shown, in this case, to yield an enzyme with quite different sequential/structural properties to known lipases. It serves as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure–function relationships of esterase activity.  相似文献   

10.
A novel cold-adapted lipolytic enzyme gene, est97, was identified from a high Arctic intertidal zone sediment metagenomic library. The deduced amino acid sequence of Est97 showed low similarity with other lipolytic enzymes, the maximum being 30 % identity with a putative lipase from Vibrio caribbenthicus. Common features of lipolytic enzymes, such as the GXSXG sequence motif, were detected. The gene product was over-expressed in Escherichia coli and purified. The recombinant Est97 (rEst97) hydrolysed various ρ-nitrophenyl esters with the best substrate being ρ-nitrophenyl hexanoate (K m and k cat of 39 μM and 25.8 s?1, respectively). This esterase activity of rEst97 was optimal at 35 °C and pH 7.5 and the enzyme was unstable at temperatures above 25 °C. The apparent melting temperature, as determined by differential scanning calorimetry was 39 °C, substantiating Est97 as a cold-adapted esterase. The crystal structure of rEst97 was determined by the single wavelength anomalous dispersion method to 1.6 Å resolution. The protein was found to have a typical α/β-hydrolase fold with Ser144-His226-Asp197 as the catalytic triad. A suggested, relatively short lid domain of rEst97 is composed of residues 80–114, which form an α-helix and a disordered loop. The cold adaptation features seem primarily related to a high number of methionine and glycine residues and flexible loops in the high-resolution structures.  相似文献   

11.
A salt‐tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p‐nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three‐dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat‐resistant features. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:890–899, 2015  相似文献   

12.

Objective

To isolate putative lipase enzymes by screening a Cerrado soil metagenomic library with novel features.

Results

Of 6720 clones evaluated, Clone W (10,000 bp) presented lipolytic activity and four predicted coding sequences, one of them LipW. Characterization of a predicted esterase/lipase, LipW, showed 28% sequence identity with an arylesterase from Pseudomonas fluorescens (pdb|3HEA) from protein database (PDB). Phylogenetic analysis showed LipW clustered with family V lipases; however, LipW was clustered in different subclade belonged to family V, suggesting a different subgroup of family V. In addition, LipW presented a difference in family V GH motif, a glycine replaced by a serine in GH motif. Estimated molecular weight and stokes radius values of LipW were 29,338.67–29,411.98 Da and 2.58–2.83 nm, respectively. Optimal enzyme activity was observed at pH 9.0–9.5 and at 40 °C. Circular dichroism analysis estimated secondary structures percentages as approximately 45% α-helix and 15% β-sheet, consistent with the 3D structure predicted by homology.

Conclusion

Our results demonstrate the isolation of novel family V lipolytic enzyme with biotechnological applications from a metagenomic library.
  相似文献   

13.
To search for new cold-active lipases, a metagenomic library was constructed using cold-sea sediment samples at Edison Seamount and was screened for lipolytic activities by plating on a tricaprylin medium. Subsequently, a fosmid clone was selected, and the whole sequence of 36 kb insert of the fosmid clone was determined by shotgun sequencing. The sequence analysis revealed the presence of 25 open reading frames (ORF), and ORF20 (EML1) showed similarities to lipases. Phylogenetic analysis of EML1 suggested that the protein belonged to a new family of esterase/lipase together with LipG. The EML1 gene was expressed in Escherichia coli, and purified by metal-chelating chromatography. The optimum activity of the purified EML1 (rEML1) occurred at pH 8.0 and 25°C, respectively, and rEML1 displayed more than 50% activity at 5°C. The activation energy for the hydrolysis of olive oil was determined to be 3.28 kcal/mol, indicating that EML1 is a cold-active lipase. rEML1 preferentially hydrolyzed triacylglycerols acyl-group chains with long chain lengths of ≥8 carbon atoms and displayed hydrolyzing activities toward various natural oil substrates. rEML1 was resistant to various detergents such as Triton X-100 and Tween 80. This study represents an example which developed a new cold-active lipase from a deep-sea sediment metagenome.  相似文献   

14.
Screening for novel lipolytic enzymes from uncultured soil microorganisms   总被引:12,自引:0,他引:12  
The construction and screening of metagenomic libraries constitute a valuable resource for obtaining novel biocatalysts. In this work, we present the construction of a metagenomic library in Escherichia coli using fosmid and microbial DNA directly isolated from forest topsoil and screened for lipolytic enzymes. The library consisted of 33,700 clones with an average DNA insert size of 35 kb. Eight unique lipolytic active clones were obtained from the metagenomic library on the basis of tributyrin hydrolysis. Subsequently, secondary libraries in a high-copy-number plasmid were generated to select lipolytic subclones and to characterize the individual genes responsible for the lipolytic activity. DNA sequence analysis of six genes revealed that the enzymes encoded by the metagenomic genes for lipolytic activity were novel with 34–48% similarity to known enzymes. They had conserved sequences similar to those in the hormone-sensitive lipase family. Based on their deduced amino acid similarity, the six genes encoding lipolytic enzymes were further divided into three subgroups, the identities among which ranged from 33% to 45%. The six predicted gene products were successfully expressed in E. coli and secreted into the culture broth. Most of the secreted enzymes showed a catalytic activity for hydrolysis of p-nitrophenyl butyrate (C4) but not p-nitrophenyl palmitate (C16).  相似文献   

15.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

16.
Three new lipolytic genes were isolated from a forest soil metagenomic library by functional screening on tributyrin agar plates. The genes SBLip1, SBLip2 and SBLip5.1 respectively encode polypeptides of 445, 346 and 316 amino acids. Phylogenetic analyses revealed that SBLip2 and SBLip5.1 belong to bacterial esterase/lipase family IV, whereas SBLip1 shows similarity to class C β-lactamases and is thus related to esterase family VIII. The corresponding genes were overexpressed and their products purified by affinity chromatography for characterization. Analyses of substrate specificity with different p-nitrophenyl esters showed that all three enzymes have a preference for short-acyl-chain p-nitrophenyl esters, a feature of carboxylesterases as opposed to lipases. The β-lactamase activity of SBLip1, measured with the chromogenic substrate nitrocefin, was very low. The three esterases have the same optimal pH (pH 10) and remain active across a relatively broad pH range, displaying more than 60 % activity between pH 6 and 10. The temperature optima determined were 35 °C for SBLip1, 45 °C for SBLip2 and 50 °C for SBLip5.1. The three esterases displayed different levels of tolerance to salts, solvents and detergents, SBLip2 being overall more tolerant to high concentrations of solvent and SBLip5.1 less affected by detergents.  相似文献   

17.
The genes encoding six novel esterolytic/lipolytic enzymes, termed LC‐Est1~6, were isolated from a fosmid library of a leaf‐branch compost metagenome by functional screening using tributyrin agar plates. These enzymes greatly vary in size and amino acid sequence. The highest identity between the amino acid sequence of each enzyme and that available from the database varies from 44 to 73%. Of these metagenome‐derived enzymes, LC‐Est1 is characterized by the presence of a long N‐terminal extension (LNTE, residues 26–283) between a putative signal peptide (residues 1–25) and a C‐terminal esterase domain (residues 284–510). A putative esterase from Candidatus Solibacter usitatus (CSu‐Est) is the only protein, which shows the significant amino acid sequence identity (46%) to the entire region of LC‐Est1. To examine whether LC‐Est1 exhibits activity and its LNTE is important for activity and stability of the esterase domain, LC‐Est1 (residues 26–510), LC‐Est1C (residues 284–510), and LC‐Est1C* (residues 304–510) were overproduced in E. coli, purified, and characterized. LC‐Est1C* was only used for structural analysis. The crystal structure of LC‐Est1C* highly resembles that of the catalytic domain of Thermotoga maritima esterase, suggesting that LNTE is not required for folding of the esterase domain. The enzymatic activity of LC‐Est1C was lower than that of LC‐Est1 by 60%, although its substrate specificity was similar to that of LC‐Est1. LC‐Est1C was less stable than LC‐Est1 by 3.3°C. These results suggest that LNTE of LC‐Est1 rather exists as an independent domain but is required for maximal activity and stability of the esterase domain.  相似文献   

18.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

19.
Abstract

Candida rugosa is an excellent source of multiple lipase and esterase enzymes; therefore, it is of technological importance to formulate the medium that provides high activity for each enzyme. In this work, the cultivation medium comprising complex nutrients that provided the highest activity, productivity, and yield of C. rugosa enzymes individually was formulated. Time courses of the extracellular and intracellular lipase and esterase activities of C. rugosa were represented and the role of protease in the cultivation progress was discussed. Urea, soy-peptone, yeast extract, a mixture of soy-peptone and yeast extract, cheese whey, and wheat mill bran were tested for their lipolytic and esterasic activities. Urea provided considerably higher extracellular lipase activity when compared to other nitrogen sources; however, soy-peptone provided the highest extracellular esterase activity. Hazelnut, olive, sesame, soybean, and flax seed oils affected the enzyme activities to different extents related to their fatty acid compositions. Hazelnut oil and olive oil provided the highest extracellular lipase and esterase activities, respectively, whereas sesame oil produced the highest biomass. High C18 and C16 ester contents of vegetable oils promoted high lipase and esterase productions, respectively. A temperature of 30°C yielded the highest extracellular and intracellular lipase and esterase activities; however, 35°C produced the highest biomass.  相似文献   

20.
Extracellular cholesterol esterase of Burkholderia cepacia strain ST-200 was purified from the culture supernatant. Its molecular mass was 37 kDa. The enzyme was stable at pH 5.5–12 and active at pH 5.5–6, showing optimal activity at pH 7.0 at 45°C. Relative to the commercially available cholesterol esterases, the purified enzyme was highly stable in the presence of various water-miscible organic solvents. The enzyme preferentially hydrolyzed long-chain fatty acid esters of cholesterol, except for that of cholesteryl palmitate. The enzyme exhibited lipolytic activity toward various p-nitrophenyl esters. The hydrolysis rate of p-nitrophenyl caprylate was enhanced 3.5- to 7.2-fold in the presence of 5–20% (vol/vol) water-miscible organic solvents relative to that in the absence of organic solvents. The structural gene encoding the cholesterol esterase was cloned and sequenced. The primary translation product was predicted to be 365 amino acid residues. The mature product is composed of 325 amino acid residues. The amino acid sequence of the product showed the highest similarity to the lipase LipA (87%) from B. cepacia DSM3959.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号