首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Tyr-503 of beta-galactosidase was specifically replaced with Phe, His, Cys, and Lys using site-directed mutagenesis. The normal enzyme and the substituted enzymes were purified. The activities of each of the substituted enzymes with o-nitrophenyl-beta-D-galactopyranoside (ONPG) and p-nitrophenyl-beta-D-galactopyronoside (PNPG) were very low and Y503K-beta-galactosidase was essentially inactive, showing that Tyr-503 is important for activity. The stability (including tetrameric stability) of the enzymes at 4 and 25 degrees C was essentially the same as that of the wild-type enzyme and the cleavage patterns on sodium dodecyl sulfate gels after protease action were unchanged. These studies thus indicate that Tyr-503 has no noticeable influence on stability under normal conditions. The substitutions for Tyr-503 had some small effects on the binding of both substrate and inhibitor. However, both kappa 2 (glycosidic bond cleavage rate) and kappa 3 (hydrolysis rate constant) were dramatically reduced. Each substitution except that of Lys (which can be explained by electrostatic effects) gave decreases in kappa 2 and kappa 3 of roughly the same magnitude regardless of whether the substitutions were conservative or not. This strongly implies that the changes in rate were not due to conformational changes as it is very unlikely that there would be such similar decreases in the values of kappa 2 and kappa 3 for amino acids with such different structures and chemical properties if the changes in rate were due to conformational differences. The data suggest that one possible role of Tyr-503 is as a general acid/base catalyst. Profiles of the kinetic data of the enzymes as functions of pH supported the suggestion that Tyr-503 normally acts as a general acid and base catalyst. When Tyr-503 was substituted by His, a small amount of base catalytic activity seemed to be restored. The strongest evidence that Tyr-503 acts as an acid catalyst came from studies with isoquinolinium-beta-D-galactopyranoside as the substrate. The kappa cat(s) of Y503F-beta-galactosidase and of Y503C-beta-galactosidase decreased by about an order of magnitude while the rate decreases were about 3 orders of magnitude with ONPG and PNPG. The breakdown of isoquinolinium-beta-D-galactopyranoside cannot be catalyzed by acids.  相似文献   

2.
Trp-999 is a key residue for the action of beta-galactosidases (Escherichia coli). Several site specific substitutions (Phe, Gly, Tyr, Leu) for Trp-999 were made. Each substitution caused greatly decreased affinities for substrates and inhibitors that bind in the "shallow" mode, while the affinities of inhibitors that bind in the "deep" mode were not decreased nearly as much. This shows that Trp-999 is important for binding in the shallow mode. The residue is also very important for binding glucose to galactosyl-beta-galactosidase (as a transgalactosidic acceptor). Substitution greatly diminished the affinity for glucose. Substitutions also changed the activation thermodynamics and, subsequently, the rates of the catalytic reactions. The enthalpies of activation of the glycolytic bond cleavage step (galactosylation, k(2)) became less favorable while the entropies of activation of that step became more favorable as a result of the substitutions. Differing magnitudes of these enthalpic and entropic effects with ONPG as compared to PNPG caused the k(2) values for ONPG to decrease but to increase for PNPG. The enthalpies of activation for the common hydrolytic step (degalactosylation, k(3)) increased while the entropies of activation for this step did not change much. As a result, k(3) became small and rate determining for each substituted enzyme. The substitutions caused the rate constant (k(4)) of the transgalactosidic acceptor reactions with glucose (for the formation of allolactose) to become much larger and of the same order of magnitude as the normally large rate constants for transgalactosidic acceptor reactions with small alcohols. This is probably because glucose can approach with less restriction in the absence of Trp-999. However, since glucose binds very poorly to the galactosyl-beta-galactosidases with substitutions for Trp-999, the proportion of lactose molecules converted to allolactose is small. Thus, Trp-999 is also important for ensuring that an appropriate proportion of lactose is converted to allolactose.  相似文献   

3.
The interactions between Na+ (and K+) and Asp-201 of beta-galactosidase were studied. Analysis of the changes in Km and Vmax showed that the Kd for Na+ of wild type beta-galactosidase (0.36 +/- 0.09 mM) was about 10x lower than for K+ (3.9 +/- 0.6 mM). The difference is probably because of the size and other physical properties of the ions and the binding pocket. Decreases of Km as functions of Na+ and K+ for oNPG and pNPG and decreases of the Ki of both shallow and deep mode inhibitors were similar, whereas the Km and Ki of substrates and inhibitors without C6 hydroxyls remained constant. Thus, Na+ and K+ are important for binding galactosyl moieties via the C6 hydroxyl throughout catalysis. Na+ and K+ had lesser effects on the Vmax. The Vmax of pNPF and pNPA (substrates that lack a C6 hydroxyl) did not change upon addition of Na+ or K+, showing that the catalytic effects are also mediated via the C6 hydroxyl. Arrhenius plots indicated that Na+, but not K+, caused k3 (degalactosylation) to increase. Na+ also caused the k2 (galactosylation) with oNPG, but not with pNPG, to increase. In contrast, K+ caused the k2 values with both oNPG and pNPG to increase. Na+ and K+ mainly altered the entropies of activation of k2 and k3 with only small effects on the enthalpies of activation. This strongly suggests that only the positioning of the substrate, transition states, and covalent intermediate are altered by Na+ and K+. Further evidence that positioning is important was that substitution of Asp-201 with a Glu caused the Km and Ki values to increase significantly. In addition, the Kd values for Na+ or K+ were 5 to 8 fold higher. The negative charge of Asp-201 was shown to be vital for Na+ and K+ binding. Large amounts of Na+ or K+ had no effect on the very large Km and Ki values of D201N-beta-galactosidase and the Vmax values changed minimally and in a linear rather than hyperbolic way. D201F-beta-galactosidase, with a very bulky hydrophobic side chain in place of Asp, essentially obliterated all binding and catalysis.  相似文献   

4.
The Mg2+ concentrations required for half maximal activity, the dissociation constants, and the free energies of binding for Mg2+ bound to wild type beta-galactosidase and several site specific mutants are reported. The mutants have one of the following substitutions: Glu-461 substituted with Asp, Gln, Gly, His, or Lys; or Tyr-503 substituted with Phe, His or Cys. Substitutions for Tyr-503 had little effect on the affinity of the enzyme for Mg2+, implying that Tyr-503 is not involved in Mg2+ binding. Neutrally charged amino acids substituted for the negatively charged Glu-461 significantly decreased the affinity of the enzyme for Mg2+ and substitution of positively charged amino acids at this position further decreased the affinity. On the other hand, substitution by Asp (negative charge) at position 461 had no effect on the binding. Thus, the negatively charged side chain of Glu-461 is important for divalent cation binding to beta-galactosidase.  相似文献   

5.
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

6.
β-Galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low k cat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-β-galactosidase was inactivated in an “additive” manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-β-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent β-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

7.
R67 dihydrofolate reductase (R67 DHFR) catalyzes the transfer of a hydride ion from NADPH to dihydrofolate, generating tetrahydrofolate. The homotetrameric enzyme provides a unique environment for catalysis as both ligands bind within a single active site pore possessing 222 symmetry. Mutation of one active site residue results in concurrent mutation of three additional symmetry-related residues, causing large effects on binding of both ligands as well as catalysis. For example, mutation of symmetry-related tyrosine 69 residues to phenylalanine (Y69F), results in large increases in Km values for both ligands and a 2-fold rise in the kcat value for the reaction (Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. (2001) Biochemistry 40, 11344-11352). To understand the interactions between specific Tyr-69 residues and each ligand, asymmetric Y69F mutants were generated that contain one to four Y69F mutations. A general trend observed from isothermal titration calorimetry and steady-state kinetic studies of these asymmetric mutants is that increasing the number of Y69F mutations results in an increase in the Kd and Km values. In addition, a comparison of steady-state kinetic values suggests that two Tyr-69 residues in one half of the active site pore are necessary for NADPH to exhibit a wild-type Km value. A tyrosine 69 to leucine mutant was also generated to approach the type(s) of interaction(s) occurring between Tyr-69 residues and the ligands. These studies suggest that the hydroxyl group of Tyr-69 is important for interactions with NADPH, whereas both the hydroxyl group and hydrophobic ring atoms of the Tyr-69 residues are necessary for proper interactions with dihydrofolate.  相似文献   

8.
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C alpha H, C beta H',H", and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. In addition, the spatial proximity of the rings in the pairs Tyr-4, Tyr-58; Tyr-42, Tyr-40; and Tyr-40, Tyr-38 has also been established. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. The Trp-47 indole NH is interacting with the carboxylate groups of two proximal acidic residues. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.  相似文献   

9.
Tripp BC  Ferry JG 《Biochemistry》2000,39(31):9232-9240
Four glutamate residues in the prototypic gamma-class carbonic anhydrase from Methanosarcina thermophila (Cam) were characterized by site-directed mutagenesis and chemical rescue studies. Alanine substitution indicated that an external loop residue, Glu 84, and an internal active site residue, Glu 62, are both important for CO(2) hydration activity. Two other external loop residues, Glu 88 and Glu 89, are less important for enzyme function. The two E84D and -H variants exhibited significant activity relative to wild-type activity in pH 7.5 MOPS buffer, suggesting that the original glutamate residue could be substituted with other ionizable residues with similar pK(a) values. The E84A, -C, -K, -Q, -S, and -Y variants exhibited large decreases in k(cat) values in pH 7.5 MOPS buffer, but only exhibited small changes in k(cat)/K(m). These same six variants were all chemically rescued by pH 7.5 imidazole buffer, with 23-46-fold increases in the apparent k(cat). These results are consistent with Glu 84 functioning as a proton shuttle residue. The E62D variant exhibited a 3-fold decrease in k(cat) and a 2-fold decrease in k(cat)/K(m) relative to those of the wild type in pH 7.5 MOPS buffer, while other substitutions (E62A, -C, -H, -Q, -T, and -Y) resulted in much larger decreases in both k(cat) and k(cat)/K(m). Imidazole did not significantly increase the k(cat) values and slightly decreased the k(cat)/K(m) values of most of the Glu 62 variants. These results indicate a primary preference for a carboxylate group at position 62, and support a proposed catalytic role for residue Glu 62 in the CO(2) hydration step, but do not definitively establish its role in the proton transport step.  相似文献   

10.
His-391 of beta-galactosidase (Escherichia coli) was substituted by Phe, Glu, and Lys. Homogeneous preparations of the substituted enzymes were essentially inactive unless very rapid purifications were performed, and the assays were done immediately. The inactive enzymes were tetrameric, just like wild-type beta-galactosidase and their fluorescence spectra were identical to the fluorescence spectrum of wild-type enzyme. Analyses of two of the substituted enzymes that were very rapidly purified to homogeneity and rapidly assayed while they were still active (at only a few substrate concentrations so that the data could be rapidly obtained), showed that the kinetic values were very similar to the values obtained with the same enzymes that were only partially purified. This showed that the kinetics were not affected by the degree of purity and allowed kinetic analyses with partially purified enzymes so that large numbers of points could be used for accuracy. The data showed that His-391 is a very important residue. It interacts strongly with the transition state and promotes catalysis by stabilizing the transition state. Activation energy differences (deltadelta G(S) double dagger), as determined by differences in the kcat/Km values, indicated that substitutions for His-391 caused very large destabilizations (22.8-35.9 kJ/mol) of the transition state. The importance of His-391 for transition state stabilization was confirmed by studies that showed that transition state analogs are very poor inhibitors of the substituted enzymes, while inhibition by substrate analogs was only affected in a small way by substituting for His-391. The poor stabilities of the transition states caused significant decreases of the rates of the glycolytic cleavage steps (galactosylation, k2). Degalactosylation (k3) was not decreased to the same extent.  相似文献   

11.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymes from different species differ with respect to carboxylation catalytic efficiency and CO2/O2 specificity, but the structural basis for these differences is not known. Whereas much is known about the chloroplast-encoded large subunit, which contains the alpha/beta-barrel active site, much less is known about the role of the nuclear-encoded small subunit in Rubisco structure and function. In particular, a loop between beta-strands A and B contains 21 or more residues in plants and green algae, but only 10 residues in prokaryotes and nongreen algae. To determine the significance of these additional residues, a mutant of the green alga Chlamydomonas reinhardtii, which lacks both small-subunit genes, was used as a host for transformation with directed-mutant genes. Although previous studies had indicated that the betaA-betaB loop was essential for holoenzyme assembly, Ala substitutions at residues conserved among land plants and algae (Arg-59, Tyr-67, Tyr-68, Asp-69, and Arg-71) failed to block assembly or eliminate function. Only the Arg-71 --> Ala substitution causes a substantial decrease in holoenzyme thermal stability. Tyr-68 --> Ala and Asp-69 --> Ala enzymes have lower K(m)(CO2) values, but these improvements are offset by decreases in carboxylation V(max) values. The Arg-71 --> Ala enzyme has a decreased carboxylation V(max) and increased K(m)(CO2) and K(m)(O2) values, which account for an observed 8% decrease in CO2/O2 specificity. Despite the fact that Arg-71 is more than 20 A from the large-subunit active site, it is apparent that the small-subunit betaA-betaB loop region can influence catalytic efficiency and CO2/O2 specificity.  相似文献   

12.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Grayanotoxin (GTX) exerts selective effects on voltage-dependent sodium channels by eliminating fast sodium inactivation and causing a hyperpolarizing shift in voltage dependence of channel activation. In this study, we adopted a newly developed protocol that provides independent estimates of the binding and unbinding rate constants of GTX (k(on) and k(off)) to GTX sites on the sodium channel protein, important in the molecular analysis of channel modification. Novel GTX sites were determined in D2S6 (Asn-784) and D3S6 (Ser-1276) by means of site-directed mutagenesis; the results suggested that the GTX receptor consists of the S6 transmembrane segments of four homologous domains facing the ion-conducting pore. We systematically introduced at two sites in D4S6 (Na(v)1.4-Phe-1579 and Na(v)1.4-Tyr-1586) amino acid substituents with residues containing hydrophobic, aromatic, charged, or polar groups. Generally, substitutions at Phe-1579 increased both k(on) and k(off), resulting in no prominent change in dissociation constant (K(d)). It seems that the smaller the molecular size of the residue at Na(v)1.4-Phe-1579, the larger the rates of k(on) and k(off), indicating that this site acts as a gate regulating access of toxin molecules to a receptor site. Substitutions at Tyr-1586 selectively increased k(off) but had virtually no effect on k(on), thus causing a drastic increase in K(d). At position Tyr-1586, a hydrophobic or aromatic amino acid side chain was required to maintain normal sensitivity to GTX. These results suggest that the residue at position Tyr-1586 has a more critical role in mediating GTX binding than the one at position Phe-1579. Here, we propose that the affinity of GTX to Na(v)1.4 sodium channels might be regulated by two residues (Phe and Tyr) at positions Phe-1579 and Tyr-1586, which, respectively, control access and binding of GTX to its receptor.  相似文献   

14.
Undecaprenyl diphosphate synthase catalyzes the sequential condensation of eight molecules of isopentenyl diphosphate (IPP) in the cis-configuration into farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of the bacterial cell wall. This cis-type prenyltransferase exhibits a quite different mode of binding of homoallylic substrate IPP from that of trans-type prenyltransferase [Kharel Y. et al. (2001) J. Biol. Chem. 276, 28459-28464]. In order to know the IPP binding mode in more detail, we selected six highly conserved residues in Regions III, IV, and V among nine conserved aromatic residues in Micrococcus luteus B-P 26 UPP synthase for substitution by site-directed mutagenesis. The mutant enzymes were expressed and purified to homogeneity, and then their effects on substrate binding and the catalytic function were examined. All of the mutant enzymes showed moderately similar far-UV CD spectra to that of the wild-type, indicating that none of the replacement of conserved aromatic residues affected the secondary structure of the enzyme. Kinetic analysis showed that the replacement of Tyr-71 with Ser in Region III, Tyr-148 with Phe in Region IV, and Trp-210 with Ala in Region V brought about 10-1,600-fold decreases in the kcat/Km values compared to that of the wild-type but the Km values for both substrates IPP and FPP resulted in only moderate changes. Substitution of Phe-207 with Ser in Region V resulted in a 13-fold increase in the Km value for IPP and a 1,000-2,000-fold lower kcat/Km value than those of the wild-type, although the Km values for FPP showed about no significant changes. In addition, the W224A mutant as to Region V showed 6-fold and 14-fold increased Km values for IPP and FPP, respectively, and 100-250-fold decreased kcat/Km values as compared to those of the wild-type. These results suggested that these conserved aromatic residues play important roles in the binding with both substrates, IPP and FPP, as well as the catalytic function of undecaprenyl diphosphate synthase.  相似文献   

15.
The preponderance of nonpolar contacts between CoA and chloramphenicol acetyltransferase in the high resolution structure of the binary complex prompted a study of selected hydrophobic residues by site-directed mutagenesis and steady-state kinetic analysis. Substitutions of three aromatic residues were used to evaluate binding contacts with the adenine moiety of CoA (Tyr-178), the pantetheine arm of the coenzyme (Tyr-56), and the S-acyl substituent (Phe-33). For those substitutions at residues 56 and 178 that cannot promote alternative polar interactions there is a correlation between residue hydrophobicity and the free energy of formation of the binary and ternary complexes of acetyl-CoA and chloramphenicol acetyltransferase and of the transition-state complex. Substitutions at Tyr-178 destabilize all such complexes to approximately the same extent (uniform binding changes), whereas those at Tyr-56 and Phe-33 cause differential binding changes, having a greater effect on the transition state than on either of the other complexes with acetyl-CoA.  相似文献   

16.
Aromatic residues may play several roles in integral membrane proteins, including direct interaction with substrates. In this work, we studied the contribution of tyrosine residues to the activity of EmrE, a small multidrug transporter from Escherichia coli that extrudes various drugs across the plasma membrane in exchange with protons. Each of five tyrosine residues was replaced by site-directed mutagenesis. Two of these residues, Tyr-40 and Tyr-60, can be partially replaced with hydroxyamino acids, but in the case of Tyr-40, replacement with either Ser or Thr generates a protein with modified substrate specificity. Replacement of Tyr-4 with either Trp or Phe generates a functional transporter. A Cys replacement at this position generates an uncoupled protein; it binds substrate and protons and transports the substrate downhill but is impaired in uphill substrate transport in the presence of a proton gradient. The role of these residues is discussed in the context of the published structures of EmrE.  相似文献   

17.
Upon nitration of the phosphocarrier protein HPr three nitrated derivatives of the protein were isolated: mononitrated HPr, dinitrated HPr and trinitrated HPr. Tryptic digestion of the derivatives leads to nitrotyrosine-containing peptides which were isolated and characterized by amino acid analysis. This resulted in the determination of the positions of the nitrated tyrosyl residues in the amino acid sequence. In mononitrated HPr only Tyr-56 was modified, in dinitrated HPr both Tyr-56 and Tyr-37 had reacted with the nitrating agent; modification of all three tyrosyl residues in trinitrated HPr required more drastic reaction conditions. The nuclear magnetic resonance spectra of the three derivatives allowed the assignments of the tyrosine resonances as follows: Tyr-A and Tyr-B with pK values of 10.5 and 11.5 were designated Tyr-56 and Tyr-37 whereas Tyr-C, whose protons are not titratable before denaturation of the protein, was assigned to Tyr-6 in the amino acid sequence. The nitration studies, together with the titration behaviour of the three tyrosines, indicate the topology of the tyrosyl residues to be as follows: Tyr-56 is located at the surface, Tyr-37 is slightly buried, Tyr-6 is deeply buried. The nitrotyrosyl derivatives retain their biological activity.  相似文献   

18.
Family 3 beta-glucosidases from Aspergillus niger with substitutions for Trp-49 result in the accumulation of very small amounts of transglucosidic adducts, compared to the large amounts that accumulate with wild type enzyme. On the other hand, the amounts of the hydrolytic products that form is decreased by only small amounts. Kinetic studies showed that the main reason for the decreased accumulation of transglucosidic intermediates is a large decrease in binding capacity for Glc at site +1 and an increase in binding ability at site-1. The hydrolytic catalytic constants (kcat(h)) of the substituted enzymes were 3 to 4-fold smaller than those of wild type enzymes, while the Km(h) values were less than 2-fold smaller. The catalytic constants of the transglucosidic reactions (kcat(t) values) were essentially unchanged, but the Km(t) values of the substituted enzymes were about 25-fold larger than those of wild type enzymes. These changes mean that the efficiencies of hydrolytic reactions (kcat(h)/Km(h)) of beta-glucosidases created through substitutions for Trp-49 are less than 2-fold smaller than those of wild type beta-glucosidase, but the efficiencies of the transglucosidic reactions (kcat(t)/Km(t)) of the substituted enzymes are 25 to 30-fold smaller. This results in a significantly decreased formation of transglucosidic intermediates. In addition, the high hydrolytic efficiencies of the substituted enzymes, cause even the very small amounts of transglucosidic intermediates that form to be rapidly hydrolyzed. The overall effect is a very small accumulation of intermediates.  相似文献   

19.
Oncomodulin is a 108-residue, oncodevelopmental protein containing two calcium-binding sites identified as the CD- and EF-loops. The protein contains no tryptophan and only two tyrosine residues, one which is a calcium ligand in the CD-loop (Tyr-57) and one which lies in the flanking D-helix of this loop (Tyr-65). Site-specific mutagenesis was performed to yield five mutants, two with phenylalanine substituted for tyrosine in positions 57 and 65 and three with tryptophan substituted into position 57 in the CD-loop, position 65 in the D-helix, and position 96 in the EF-loop. The single Tyr-containing mutants demonstrated that position 57 was perturbed to a significantly greater extent than position 65 upon calcium binding. Although both tyrosine residues responded to decalcification, the fluorescence intensity changes were in opposite directions, with the more dominant Tyr-57 accounting for the majority of the intrinsic fluorescence observed in native oncomodulin. The substitution of tryptophan for each tyrosyl residue revealed that in both positions the tryptophan resided in polar, conformationally heterogeneous environments. The environment of Trp-57 was affected by Ca2+ binding to a much greater extent compared to that of Trp-65. Only 1 equiv of Ca2+ was required to produce greater than 70% of the Trp fluorescence changes in positions 57 and 65, indicating that Ca2+ binding to the higher affinity EF-loop had a pronounced effect on the protein structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effect of neurophysin dimerization on Tyr-49, a residue adjacent to the hormone-binding site, was investigated by proton NMR in order to analyze the basis of the dimerization-induced increase in neurophysin hormone affinity. Dimerization-induced changes in Tyr-49 resonances, in two unliganded bovine neurophysins, suggested that Tyr-49 perturbation is an intrinsic consequence of dimerization, although Tyr-49 is distant from the monomer-monomer interface in the crystalline liganded state. To determine whether this perturbation reflects a conformational difference between liganded and unliganded states that places Tyr-49 at the interface in the unliganded state, or a dimerization-induced change in secondary (2 degrees) or tertiary (3 degrees) structure, the more general structural consequences of dimerization were further analyzed. No change in 2 degrees structure upon dimerization was demonstrable by CD. On the other hand, a general similarity of regions involved in dimerization in unliganded and liganded states was indicated by NMR evidence of participation of His-80 and Phe-35 in dimerization in the unliganded state; both residues are at the interface in the crystal structure and distant from Tyr-49. Consistent with a lack of direct participation of Tyr-49 at the monomer-monomer interface, dimerization induced at least two distinct slowly exchanging environmental states for the 3.5 ring protons of Tyr-49 without significantly increased dipolar broadening relative to the monomer. Two environments were also found in the dimer of des-1-8 neurophysin-I for the methyl protons of Thr-9, another residue distant from the monomer-monomer interface and close to the binding site in the liganded state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号