首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are interested in how the addition of type heterogeneities affects the long time behaviour of models for endemic diseases. We do this by analysing a two-type version of a model introduced by Bartlett under the restriction of proportionate mixing. This model is used to describe diseases for which individuals switch states according to susceptible-->infectious-->recovered and immune, where the immunity is life-long. We describe an approximation of the distribution of the time to extinction given that the process is started in the quasi-stationary distribution, and we analyse how the variance and the coefficient of variation of the number of infectious individuals depends on the degree of heterogeneity between the two types of individuals. These are then used to derive an approximation of the time to extinction. From this approximation we conclude that if we increase the difference in infectivity between the two types the expected time to extinction decreases, and if we instead increase the difference in susceptibility the effect on the expected time to extinction depends on which part of the parameter space we are in, and we can also obtain non-monotonic behaviour. These results are supported by simulations.  相似文献   

2.
In this paper, we examine, for small metapopulations, the stochastic analog of the classical Levins metapopulation model. We study its basic model output, the expected time to metapopulation extinction, for systems which are brought out of equilibrium by imposing sudden changes in patch number and the colonization and extinction parameters. We find that the expected metapopulation extinction time shows different behavior from the relaxation time of the original, deterministic, Levins model. This relaxation time is therefore limited in value for predicting the behavior of the stochastic model. However, predictions about the extinction time for deterministically unviable cases remain qualitatively the same. Our results further suggest that, if we want to counteract the effects of habitat loss or increased dispersal resistance, the optimal conservation strategy is not to restore the original situation, that is, to create habitat or decrease resistance against dispersal. As long as the costs for different management options are not too dissimilar, it is better to improve the quality of the remaining habitat in order to decrease the local extinction rate.  相似文献   

3.
Extinction risk under coloured environmental noise   总被引:1,自引:0,他引:1  
Positively autocorrelated red environmental noise is characterized by a strong dependence of expected sample variance on sample length. This dependence has to be taken into account when assessing extinction risk under red and white uncorrelated environmental noise. To facilitate a comparison between red and white noise, their expected variances can be scaled to be equal, but only at a chosen time scale. We show with a simple one-dimensional population dynamics model that the different but equally reasonable choices of the time scale yield qualitatively different results on the dependence of extinction risk on the colour of environmental noise: extinction risk might increase as well as decrease when the temporal correlation of noise increases.  相似文献   

4.
Catastrophic regime shifts in ecosystems occur when the system is tipped into a new attractor state under some external forcing. Here we consider whether evolutionary adaptations within ecosystems can trigger similar transitions. We use an individual‐based, evolutionary model of interconnected ecosystems to analyze nonlinear changes in global state resulting from local adaptations. Transitions between periods of stability occur when new traits arise that allow exploitation of under‐utilized resources. Subsequent rapid growth of the population carrying the new trait causes abrupt environmental change that drives incumbent species extinct. We call these transitions ‘evolutionary regime shifts’. These internally generated perturbations can result in ecosystem collapse, followed by recovery to an alternate stable state, or occasionally system‐wide extinction. While these disruptions may have a negative impact on ecosystem productivity in individual simulation runs, mean results over many simulations show a trend for increasing ecosystem productivity and stability over time. Feedback between life and the abiotic environment in the model creates a ‘long‐tailed’ distribution of extinction sizes without any external trigger for large extinction events.  相似文献   

5.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

6.
Extinction and quasi-stationarity in the Verhulst logistic model.   总被引:7,自引:0,他引:7  
We formulate and analyse a stochastic version of the Verhulst deterministic model for density-dependent growth of a single population. Three parameter regions with qualitatively different behaviours are identified. Explicit approximations of the quasi-stationary distribution and of the expected time to extinction are presented in each of these regions. The quasi-stationary distribution is approximately normal, and the time to extinction is long, in one of these regions. Another region has a short time to extinction and a quasi-stationary distribution that is approximately truncated geometric. A third region is a transition region between these two. Here the time to extinction is moderately long and the quasi-stationary distribution has a more complicated behaviour. Numerical illustrations are given.  相似文献   

7.
Consider an infectious disease which is endemic in a population divided into several large sub-communities that interact. Our aim is to understand how the time to extinction is affected by the level of interaction between communities. We present two approximations of the expected time to extinction in a population consisting of a small number of large sub-communities. These approximations are described for an SIR epidemic model, with focus on diseases with short infectious period in relation to life length, such as childhood diseases. Both approximations are based on Markov jump processes. Simulations indicate that the time to extinction is increasing in the degree of interaction between communities. This behaviour can also be seen in our approximations in relevant regions of the parameter space.  相似文献   

8.
Theory for designing nature reserves for single species   总被引:1,自引:0,他引:1  
We examine the question of the optimal number of reserves that should be established to maximize the persistence of a species. We assume that the mean time to extinction of a single population increases as a power of the habitat area, that there is a certain amount of habitat to be reserved, and that the aim is to determine how this habitat is most efficiently divided. The optimal configuration depends on whether the management objective is to maximize the mean time to extinction or minimize the risk of extinction. When maximizing the mean time to extinction, the optimal number of independent reserves does not depend on the amount of available habitat for the reserve system. In contrast, the risk of extinction is minimized when individual reserves are equal to the optimal patch size, making the optimal number of reserves linearly proportional to the amount of available habitat. A model that includes dispersal and correlation in the incidence of extinction demonstrates the importance of considering the relative rate at which these two factors decrease with distance between reserves. A small number of reserves is optimal when the mean time to extinction increases rapidly with habitat area or when risks of extinction are high.  相似文献   

9.
Aggregation of variables of a complex mathematical model with realistic structure gives a simplified model which is more suitable than the original one when the amount of data for parameter estimation is limited. Here we explore use of a formula derived for a single unstructured population (canonical model) in predicting the extinction time for a population living in multiple habitats. In particular we focus multiple populations each following logistic growth with demographic and environmental stochasticities, and examine how the mean extinction time depends on the migration and environmental correlation. When migration rate and/or environmental correlation are very large or very small, we may express the mean extinction time exactly using the formula with properly modified parameters. When parameters are of intermediate magnitude, we generate a Monte Carlo time series of the population size for the realistic structured model, estimate the "effective parameters" by fitting the time series to the canonical model, and then calculate the mean extinction time using the formula for a single population. The mean extinction time predicted by the formula was close to those obtained from direct computer simulation of structured models. We conclude that the formula for an unstructured single-population model has good approximation capability and can be applicable in estimating the extinction risk of the structured meta-population model for a limited data set.  相似文献   

10.
A stochastic model for hospital infection incorporating both direct transmission and indirect transmission via free-living bacteria in the environment is investigated. We examine the long term behavior of the model by calculating a stationary distribution and normal approximation of the distribution. The quasi-stationary distribution of the model is studied to investigate the models’ behavior before extinction and the time to extinction. Numerical results show agreement between the calculated distributions and results of event-driven simulations. Hand hygiene of volunteers is more effective in terms of reducing the mean (or standard deviation) of the stationary distribution of colonized patients and the expected time to extinction compared to hand hygiene of health care workers (HCWs), on the basis of our parameter values. However, the indirect (or direct) transmission rate can lead to either increase or decrease in the standard deviation of the stationary distribution, but the impact of the indirect transmission is much greater than that of the direct transmission. The findings suggest that isolation of new admitted colonized patients is most effective in reducing both the mean and standard deviation of the stationary distribution and measures related to indirect transmission are secondary in their effects compared to other interventions.  相似文献   

11.
Quantitative genetic variation in an ecological setting   总被引:1,自引:0,他引:1  
The machinery was developed to investigate the behavior of quantitative genetic variation in an ecological model of a finite number of islands of finite size, with migration rate m and extinction rate e, for a quantitative genetic model general for numbers of alleles and loci and additive, dominance, and additive by additive epistatic effects. It was necessary to reckon with seven quadratic genetic components, whose coefficients in the genotypic variance components within demes, sigma Gw2, between demes within populations, sigma s2, and between replicate populations, sigma r2, are given by descent measures. The descent measures at any time are calculated with the use of transition equations which are determined by the parameters of the ecological model. Numerical results were obtained for the coefficients of the quadratic genetic components in each of the three genotypic variance components in the early phase of differentiation. The general effect of extinction is to speed up the time course leading to fixation, to increase sigma r2, and to decrease sigma s2 (with a few exceptions) in comparison with no extinction. The general effect of migration is to slow down the time course leading to fixation, to increase sigma Gw2, at least in the later generations, and to decrease sigma s2 (with a few exceptions) in comparison with no migration. Except for these, the effects of migration and extinction on the variance components are complex, depending on the genetic model, and sometimes involve interaction of migration and extinction. Sufficient details are given for an investigator to evaluate numerically the results for variations in the quantitative genetic and ecological models.  相似文献   

12.
Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal–extinction–sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography.  相似文献   

13.
In this paper a spatially implicit neutral model for explaining the edge effects between habitats is proposed. To analyze this model we use two different approaches: a discrete approach that is based on the Master equation for a one step jump process and a continuous approach based on the approximation of the discrete jump process with the Kolmogorov-Fokker-Planck forward and backward equations. The discrete and continuous approaches are applied to analyze the species abundance distributions and the time to species extinction. Moreover, with the aid of the continuous approach a realistic classification of the behavior of species in local communities is developed. The species abundance dynamics at the edge between two distinct habitats is compared with those located in the homogeneous interior habitats using species abundance distributions and the first time to species extinction. We show that the structure of the links between local community and the metacommunity plays an important role on species persistence. Specifically, species at the edge between two distinct metacommunities have higher extinction rate than those in the interior habitats connected only to one metacommunity. Moreover, the same species might be persistent in the homogeneous interior habitat, but its probability of extinction from the edge local community could be very high.  相似文献   

14.
From a theoretical viewpoint, nature management basically has two options to prolong metapopulation persistence: decreasing local extinction probabilities and increasing colonization probabilities. This article focuses on those options with a stochastic, single-species metapopulation model. We found that for most combinations of local extinction probabilities and colonization probabilities, decreasing the former increases metapopulation extinction time more than does increasing the latter by the same amount. Only for relatively low colonization probabilities is an effort to increase these probabilities more beneficial, but even then, decreasing extinction probabilities does not seem much less effective. Furthermore, we found the following rules of thumb. First, if one focuses on extinction, one should preferably decrease the lowest local extinction probability. Only if the extinction probabilities are (almost) equal should one prioritize decreases in the local extinction probability of the patch with the best direct connections to and from other patches. Second, if one focuses on colonization, one should preferably increase the colonization probability between the patches with the lowest local extinction probability. Only if the local extinction probabilities are (almost) equal should one instead prioritize increases in the highest colonization probability (unless extinction probabilities and colonization probabilities are very low). The rules of thumb have an important common denominator: the local extinction process has a greater bearing on metapopulation extinction time than colonization.  相似文献   

15.
In order to predict extinction risk in the presence of reddened, or correlated, environmental variability, fluctuating parameters may be represented by the family of 1/f noises, a series of stochastic models with different levels of variation acting on different timescales. We compare the process of parameter estimation for three 1/f models (white, pink and brown noise) with each other, and with autoregressive noise models (which are not 1/f noises), using data from a model time-series (length, T) of population. We then calculate the expected increase in variance and the expected extinction risk for each model, and we use these to explore the implication of assuming an incorrect noise model. When parameterising these models, it is necessary to do so in terms of the measured ("sample") parameters rather than fundamental ("population") parameters. This is because these models are non-stationary: their parameters need not stabilize on measurement over long periods of time and are uniquely defined only over a specified "window" of timescales defined by a measurement process. We find that extinction forecasts can differ greatly between models, depending on the length, T, and the coefficient of variability, CV, of the time series used to parameterise the models, and on the length of time into the future which is to be projected. For the simplest possible models, ones with population itself the 1/f noise process, it is possible to predict the extinction risk based on CV of the observed time series. Our predictions, based on explicit formulae and on simulations, indicate that (a) for very short projection times relative to T, brown and pink noise models are usually optimistic relative to equivalent white noise model; (b) for projection timescales equal to and substantially greater than T, an equivalent brown or pink noise model usually predicts a greater extinction risk, unless CV is very large; and (c) except for very small values of CV, for timescales very much greater than T, the brown and pink models present a more optimistic picture than the white noise model. In most cases, a pink noise is intermediate between white and brown models. Thus, while reddening of environmental noise may increase the long-term extinction probability for stationary processes, this is not generally true for non-stationary processes, such as pink or brown noises.  相似文献   

16.
We consider the question of how accurately we can hope to predict future biodiversity in a world in which many interacting species are at risk of extinction. Simple models assuming that species’ extinctions occur independently are easily analysed, but do not account for the fact that many species depend on or otherwise interact with each other. In this paper we evaluate the effect of explicitly incorporating ecological dependencies on the predictive ability of models of extinction. In particular, we compare a model in which species’ extinction rates increase because of the extinction of their prey to a model in which the same average rate increase takes place, but in which extinctions occur independently from species to species. One might expect that including this ecological information would make the prediction of future biodiversity more accurate, but instead we find that accounting for food web dependencies reveals greater uncertainty. The expected loss of biodiversity over time is similar between the two models, but the variance in future biodiversity is considerably higher in the model that includes species interactions. This increased uncertainty is because of the non-independence of species—the tendency of two species to respond similarly to the loss of a species on which both depend. We use simulations to show that this increase in variance is robust to many variations of the model, and that its magnitude should be largest in food webs that are highly dependent on a few basal species. Our results should hold whenever ecological dependencies cause most species’ extinction risks to covary positively, and illustrate how more information does not necessarily improve our ability to predict future biodiversity loss.  相似文献   

17.
Environmental threats, such as habitat size reduction or environmental pollution, may not cause immediate extinction of a population but may shorten the expected time to extinction. We developed a method to estimate the mean time to extinction for a density-dependent population with environmental fluctuation and to compare the impacts of different risk factors. We first derived a formula of the mean extinction time for a population with logistic growth and environmental and demographic stochasticities expressed as a stochastic differential equation model (canonical model). The relative importance of different risk factors is evaluated by the decrease in the mean extinction time. We studied an approximated formula for the reduction in habitat size that enhances extinction risk by the same magnitude as a given decrease in survivorship caused by toxic chemical exposure. In a large population (large K) or in a slowly growing population (small r), a small decrease in survivorship can cause the extinction risk to increase, corresponding to a significant reduction in the habitat size. Finally, we studied an approximate maximum likelihood estimate of three parameters (intrinsic growth rate r, carrying capacity K, and environmental stochasticity σ 2 e ) from time series data. By Monte Carlo sampling, we can remove the bias very effectively and determine the confidence interval. We discuss here how the reliability of the estimate changes with the length of time series. If we know the intrinsic rate of population growth r, the mean extinction time is estimated quite accurately even when only a short time series is available for parameter estimation. Received: March 31, 1999 / Accepted: November 9, 1999  相似文献   

18.
Species extinction and invasion concurrently affect the composition and properties of ecological communities, yet their effects have largely been studied separately, and with more focus on species and ecological functional groups than the whole-community level. We adopted a dynamic ecological network approach to compare the effects of simultaneous single-species primary extinction and invasion on a set of ecosystem metrics to the effects of extinction and invasion in isolation. We also investigated the relationship between the impact and reversibility of extinction or invasion through reintroduction or eradication, respectively. We used Monte Carlo simulations of bioenergetic ecological network models that combined trophic and mutualistic interactions, contained either prey-dependent or ratio-dependent trophic functional responses, and incorporated either white or pink environmental stochasticity. As the separate extinction or invasion impact increased, the simultaneous extinction–invasion impact increased but was decreasingly additive of the two separate impacts, across all ecosystem metrics. Greater extinction or invasion impact was associated with lower reversibility for most model types and ecosystem metrics. There were also systematic differences between models with prey- and ratio-dependent functional responses. These results highlight the importance of considering the combined effects of extinction and invasion in ecological studies, management and restoration.  相似文献   

19.
Mark F. Hill  Hal Caswell 《Oikos》2001,93(2):321-331
We present a stochastic model for metapopulations in landscapes with a finite but arbitrary number of patches. The model, similar in form to the chain-binomial epidemic models, is an absorbing Markov chain that describes changes in the number of occupied patches as a sequence of binomial probabilities. It predicts the quasi-equilibrium distribution of occupied patches, the expected extinction time (τ¯), and the probability of persistence (l¯(x)) to time x as a function of the number N of patches in the landscape and the number S of those patches that are suitable for the population. For a given value of N , the model shows that: (1) τ¯ and l¯(x) are highly sensitive to changes in S and (2) there is a threshold value of S at which τ¯ declines abruptly from extremely large to very small values. We also describe a statistical method for estimating model parameters from time series data in order to evaluate metapopulation viability in real landscapes. An example is presented using published data on the Glanville fritillary butterfly, Meltiaea cinxia , and its specialist parasitoid Cotesia melitaearum . We calculate the expected extinction time of M. cinxia as a function of the frequency of parasite outbreaks, and are able to predict the minimum number of years between outbreaks required to ensure long-term persistence of M. cinxia . The chain-binomial model provides a simple but powerful method for assessing the effects of human and natural disturbances on extinction times and persistence probabilities in finite landscapes.  相似文献   

20.
We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号