首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   

2.
Abstract

Disassortative mating in distylous self-incompatible species should result in the equilibrium of morph types in natural populations. Deviation from isoplethy may affect pollen transfer, and in isolated populations it could lead to Allee effect and genetic drift. Pollen limitation has been found to occur in several distylous species, for which mating opportunities are actually reduced to half population. In this study, we investigated the reproductive features and pollination ecology of the narrow endemic Primula apennina. We recorded equilibrium of morph frequencies in the studied population, reflecting the comparable fecundity found in the two morphs. Long-styled flowers produce more pollen grains of smaller size than short-styled ones: we hypothesize that in thrum flowers, pollen is more easily removed by the insect pollinator Macroglossum stellatarum, resulting in equal pollen amounts carried to both short styles and long styles. This lower pollen transfer efficiency from long-styled to short-styled flowers is also reflected in legitimate pollen–ovule ratio values. Despite results show no evidence of imminent threats to population persistence at study site, the strict dependence on one or very few pollinator species, and ecological traits, may increase extinction risks in the long-term period.  相似文献   

3.
In distylous, self-incompatible plants, clonal propagation, unbalanced floral morph frequencies, and reduced population size can interfere with the functioning of distyly by compromising legitimate intermorph pollinations, resulting in reduced reproductive output. Here, we examined the mating system and the impact of mate availability, population size, and spatial aggregation of morphs on reproductive output in the distylous, clonal, aquatic plant Hottonia palustris. Controlled pollinations under greenhouse conditions detected no spontaneous selfing without the action of a pollen vector (autonomous autogamy) and demonstrated very low fruit and seed development after self-pollination. Intermorph (legitimate) crossings resulted in high reproductive output in both floral morphs (long- and short-styled individuals), whereas intramorph (illegitimate) crossings decreased fruit and seed development by more than 50%, indicating that the species has partial intramorph-incompatibility. In natural populations, small population size and increasing deviation of floral morph frequencies negatively affected reproductive outcome. Individuals of the majority morph type developed significantly fewer fruit and seeds than individuals of the minority morph type. This rapid decline in fecundity was symmetrical, indicating that regardless of which morph was in the majority, the same patterns of negative frequency-dependent mating occurred. Increasing spatial isolation between compatible morphs significantly reduced fruit and seed set in both morphs similarly. This study provides clear indications of frequency- and context-dependent mating in natural populations of a distylous plant species.  相似文献   

4.
Mate searching is a key component of sexual reproduction that can have important implications for population viability, especially for the mate‐finding Allee effect. Interannual sperm storage by females may be an adaptation that potentially attenuates mate limitation, but the demographic consequences of this functional trait have not been studied. Our goal is to assess the effect of female sperm storage durability on the strength of the mate‐finding Allee effect and the viability of populations subject to low population density and habitat alteration. We used an individual‐based simulation model that incorporates realistic representations of the demographic and spatial processes of our model species, the spur‐thighed tortoise (Testudo graeca). This allowed for a detailed assessment of reproductive rates, population growth rates, and extinction probabilities. We also studied the relationship between the number of reproductive males and the reproductive rates for scenarios combining different levels of sperm storage durability, initial population density, and landscape alteration. Our results showed that simulated populations parameterized with the field‐observed demographic rates collapsed for short sperm storage durability, but were viable for a durability of one year or longer. In contrast, the simulated populations with a low initial density were only viable in human‐altered landscapes for sperm storage durability of 4 years. We find that sperm storage is an effective mechanism that can reduce the strength of the mate‐finding Allee effect and contribute to the persistence of low‐density populations. Our study highlights the key role of sperm storage in the dynamics of species with limited movement ability to facilitate reproduction in patchy landscapes or during population expansion. This study represents the first quantification of the effect of sperm storage durability on population dynamics in different landscapes and population scenarios.  相似文献   

5.
We investigate mate availability in different models of multiallelic self-incompatibility systems in mutation-selection-drift balance in finite populations. Substantial differences among self-incompatibility systems occur in average mate availability, and in variances of mate availability among individual plants. These differences are most pronounced in small populations in which low mate availability may reduce seed set in some types of sporophytic self-incompatibility. In cases where the pollination system causes a restriction in the number of pollen genotypes available to an individual plant, the fecundity of that plant depends on the availability of compatible pollen, which is determined by its genotype at the incompatibility locus. This leads to an additional component of selection acting on self-incompatibility systems, which we term “fecundity selection.” Fecundity selection increases the number of alleles maintained in finite populations and increases mate availability in small populations. The strength of fecundity selection is dependent on the type of self-incompatibility. In some cases, fecundity selection markedly alters the equilibrium dynamics of self-incompatibility alleles. We discuss the population genetic consequences of mate availability and fecundity selection in the contexts of conservation management of self-incompatible plant species and experimental investigations on self-incompatibility in natural populations.  相似文献   

6.
Characterizing population vulnerability for 758 species   总被引:5,自引:0,他引:5  
We investigate relationships between life history traits and the character of population dynamics as revealed by time series data. Our classification of time series is according to 'extinction category,' where we identify three classes of populations: (i) weakly varying populations with such high growth rates that long-term persistence is likely (unless some extreme catastrophe occurs); (ii) populations with such low growth rates that average population size must be large to buffer them against extinction in a variable environment; and (iii) highly variable populations that fluctuate so dramatically that dispersal or some other refuge mechanism is likely to be key to their avoidance of extinction. Using 1941 time series representing 758 species from the Global Population Dynamics Database, we find that, depending on the form of density dependence one assumes, between 46 and 90% of species exhibit dynamics that are so variable that even large carrying capacities could not buffer them against extinction on a 100-year time horizon. The fact that such a large proportion of population dynamics are so locally variable vindicates the growing realization that dispersal, habitat connectedness, and large-scale processes are key to local persistence. Furthermore, for mammals, simply by knowing body size, age at first reproduction, and average number of offspring we could correctly predict extinction categories for 83% of species (60 of 72).  相似文献   

7.
Selection acting on individuals is not predicted to maximize population persistence, yet examples that explicitly quantify conflicts between individual and population level benefits are scarce. One such conflict occurs over sexual reproduction because of the cost of sex: sexual populations that suffer the cost of producing males have only half the growth rate compared to asexuals. Male behaviour can additionally impact population dynamics in a variety of ways, and here we study an example where the impact is unusually clear: the riddle of persistence of sperm‐dependent sexual–asexual species complexes. Here, a sexually reproducing host species coexists with an ameiotically reproducing all‐female sperm parasite. Sexual–asexual coexistence should not be stable because the proportion of asexually reproducing females will rapidly increase and the relative abundance of the sexually reproducing host species will decline. A severe shortage of males will lead to sperm limitation for sexual and asexual females and the system collapses. Male mate choice could reduce the reproductive potential of the asexual species and thus potentially prevent the collapse. In the gynogenetic (sperm‐dependent parthenogenetic) Amazon molly Poecilia formosa and its host (P. latipinna or P. mexicana), males discriminate against asexual females to some extent. Using a population‐dynamical model, we examine the population dynamics of this species complex with varying strengths of male discrimination ability and efficiency with which they locate females and produce sperm. The sexual species would benefit from stronger discrimination, thus preventing being displaced by the asexual females. However, males would be required to evolve preferences that are probably too strong to be purely based upon selection acting on individuals. We conclude that male behaviour does not fully prevent but delays extinction, yet this is highly relevant because low local extinction rates strongly promote coexistence as a metapopulation.  相似文献   

8.
Lud&#;k Berec  David S. Boukal 《Oikos》2004,104(1):122-132
In this paper we examine how the process of mate search, degree of mate choice and degree of mate fidelity may interact to affect long‐term population dynamics of sexually reproducing species. In particular, we address the following questions: are degree of mate choice and degree of mate fidelity correlated? How does mate search shape this relationship? How does longevity affect mating behaviour? To resolve these questions, we develop a spatially explicit, individual‐based model of a sexually reproducing population with single (i.e. unpaired) males, single females, and pairs as focal individuals. Both this model and its non‐spatial approximation give rise to the Allee effect due to lack of mating possibilities, and sufficiently small/sparse populations always go extinct. We quantify combinations of mate choice and divorce rate under which populations persist or go extinct even from high sizes. We thus show that there exist ecological constraints for possible (co)evolution of mate choice and pair maintenance behaviour. Our models also suggest that colonial species with active mate search strategy survive at higher divorce rates than less colonial animals that search for their mates randomly, and that long‐lived species sustain at higher degrees of mate choice and lower degrees of mate fidelity compared to the short‐lived ones. Connection of these findings to other theoretical results and some empirical observations is discussed.  相似文献   

9.
Hedyotis caerulea possesses two distinct floral morphs that are generally found in equal numbers in naturally occurring populations. Flowers either possess a relatively long style and short anthers, called a “pin,” or a short style and long anthers, called a “thrum.” This placement of reproductive organs is considered herkogamous and distylous, as it encourages outcrossing by restricting pollination to individuals of the alternate morph. Numerous species have been described as distylous without quantitative data establishing stigma-anther reciprocity. Here we assess those assumptions in H. caerulea by measuring stigma height, anther height and a suite of additional floral traits across multiple localities. All populations surveyed were isoplethic, although variation among them was present in all floral traits measured as well as for pollen diameter, pollen count, flower dry weight, and seed set. Pins produced smaller pollen than thrums, but made more of them. Thus, the total volume of pollen was similar for pins and thrums, and seed set was similar, suggesting that each morph has equal male and female fitness with no movement towards dioecy. Given a significant degree of variation found in the morphometric analysis, and that two of the three measures used to assess reciprocity were not consistent with predictions of precise symmetry, extensive change is possible where selection is acting on these traits. Even so, the distylous mating system in H. caerulea appears to be stable.  相似文献   

10.
Reduction of pollen flow can affect plant abundance and population viability and cause selection on plant mating system and floral traits. Little is known on the effect of this phenomenon in species naturally restricted to small and isolated habitats, that may have developed strategies to cope with long-term isolation and small population size. We investigated the pollination ecology of the endemic distylous winter-flowering P. allionii to verify the possible limitation of female fitness due to reduced pollinator visits. We recorded a higher production of pollen grains in long-styled morph, and a higher seed set in short-styled morph. The high intra-morph variability of sexual organ position may explain the hybridization phenomena allowing and easier intra-morph pollination. The fruit set is constant, although its winter-flowering period might decrease pollen transfer. Nevertheless, the lower competition for pollinators with neighbouring plants and the long-lasting anthesis may offset its reproductive success. Even if our results show no evidence of imminent threats, changes in plant–pollinator interactions might increase inbreeding, resulting in an increased extinction risk.  相似文献   

11.
Heterostyly is a genetic polymorphism in which plant populations possess two (distyly) or three (tristyly) morphs with flowers differing reciprocally in stigma and anther height. Sex organ deployment has been described as being highly variable among and within species of several distylous taxa belonging to different taxonomic groups. However, the number of studies considering within‐species disparities is still limited. For a better overview of the existing amount of variation that can occur within and between heterostylous species, we sampled 46 populations of six Melochia spp., a style‐polymorphic genus in Cuba. We characterized the floral morphology in all populations and described a set of ancillary characters per species. All of these Melochia spp. are distylous, except for the monomorphic M. nodiflora. The S‐morph produces fewer, larger pollen than L‐morphs, and has verrucose ornamentation. The L‐morph produces reticulate pollen and has larger stigmatic papillae than the S‐morph. The monomorphic M. nodiflora shows ancillary characteristics that are similar to the L‐morph individuals in the related species. As expected, there are differences in ancillary characters among species and also dissimilarities in reciprocity among and within species of Melochia. Our results highlight the importance of considering intraspecific variation in the morphometric characterization of heterostylous taxa. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 147–158.  相似文献   

12.
Homomorphic self-incompatibility (SI) evolved in many plant families to enforce selfing avoidance, and is controlled by a single multiallelic locus (the S-locus). In a fragmented landscape, strong variation in population size and in local density is expected to cause strong variation in allelic diversity at the S-locus, which could generate an Allee effect on female reproductive success by constraining compatible pollen availability. In this experimental study, we aimed at detecting this SI-specific Allee effect (or S-Allee effect) in the endangered species Biscutella neustriaca. We demonstrated the occurrence of a SI mating system in the species and determined compatibility relationships among genotypes through a large set of controlled pollinations. For the experiment, we chose three different pollen receptor genotypes, each compatible with respectively 100, 75 and 25% of four other genotypes, which constituted the pollen sources. We placed different ramets of each receptor at different distances from the pollen sources to control for pollen limitation due to low local density, and we measured the seed set on each receptor plant three times consecutively. Analyses performed with generalized linear mixed models showed that both the distance to the pollen sources and the mate availability due to SI had a significant effect on seed set, with a strong reduction observed when mate availability was limited to 25%. Our results suggest that pollen limitation due to a restriction in compatible mate availability could occur in small or scattered populations exhibiting low allelic diversity at the S-locus.  相似文献   

13.
Distyly, a reproductive system characterized by the presence of long-styled (thrum). and short-styled (pin) individuals within a population, has been repeatedly used as a model for the study of the evolution of the reproductive systems in plants. Erythroxylum havanense is a distylous species in which most thrum plants fail to develop a fertile androecium, thus behaving as male-sterile or partially male-sterile plants. Short-styled (thrum) individuals have an increased performance as female parents, thereby compensating for their loss of male fitness. Previous studies of populations within close proximity to each other suggest that E. havanense may be involved in a process of gender specialization in which, unlike other heterostylous species, thrum plants are specializing as females and pins (long-styled) as males. In this paper we describe more general patterns of male sterility, one of the first steps in the evolution of gender specialization, among populations of the distylous shrub Erythroxylum havanense. Pollen germination differed among populations (range 0.52 ± 0.03 to 0.06 ± 0.04), and between morphs. Pollen from pin plants was almost two times (1.89) as fertile as that from thrums (0.36 ± 0.03 and 0.19 ± 0.03, pin and thrums respectively). Thrums were significantly more male sterile in four out of five populations. The population where differences between the floral morphs were not apparent showed the lowest levels of pollen fertility. Accordingly, our results indicate that populations of E. havanense show marked differences in pollen fertility and higher male sterility associated with the thrum morph. We hypothesize that differences between morphs could be explained if restorers of male sterility are linked to the distyly haplotype, while differences in genes associated with male sterility could explain the variation among populations. Overall, the prevalence of thrum-biased male sterility across populations suggests that E. havanense is subject to a process of gender specialization.  相似文献   

14.
Pollen limitation may have important consequences for the reproduction and abundance of plant species. It may be especially harmful to endangered and endemic plants with small populations. In this study, we quantify the effect of pollen limitation on seed production and seedling emergence in an endangered narrow endemic crucifer, Erysimum popovii. We conducted a pollen addition experiment across the entire geographic distribution of the species, and explored the effect of pollinator assemblage, plant population size and density, and other habitat variables on pollen limitation intensity in 13 populations. We supplemented flowers in 20 plants per population with allogamous pollen. To account for potential resource reallocation, we used two types of control untreated flowers: internal control flowers from the same individual as the supplemented flowers, and external control flowers from other individuals. Our results indicate that E. popovii is pollen-limited in most of the populations studied, but only through seed production, since pollen supplementation did not enhance seedling emergence. Beefly abundance was associated with among-population differences in pollen limitation intensity. Populations in which beeflies were more abundant were less pollen-limited. In contrast, the abundance of other flower visitors, such as large bees or butterflies, was not associated with pollen limitation. Annual rainfall and bare soil cover were associated with the intensity of pollen limitation across populations.  相似文献   

15.
Theoretical studies of wildlife population dynamics have proved insightful for sustainable management, where the principal aim is to maximize short-term yield, without risking population extinction. Surprisingly, infectious diseases have not been accounted for in harvest models, which is a major oversight because the consequences of parasites for host population dynamics are well-established. Here, we present a simple general model for a host species subject to density dependent reproduction and seasonal demography. We assume this host species is subject to infection by a strongly immunizing, directly transmitted pathogen. In this context, we show that the interaction between density dependent effects and harvesting can substantially increase both disease prevalence and the absolute number of infectious individuals. This effect clearly increases the risk of cross-species disease transmission into domestic and livestock populations. In addition, if the disease is associated with a risk of mortality, then the synergistic interaction between hunting and disease-induced death can increase the probability of host population extinction.  相似文献   

16.
Aim  Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects of such processes at the limits of species' distribution ranges. In this study, we have examined the potential for hybridization between range-edge populations of the wintergreen Pyrola minor and sympatric populations of Pyrola grandiflora .
Location  Qeqertarsuaq, Greenland and Churchill, Manitoba, Canada.
Methods  Genetic analysis of samples from Greenland and Canada was carried out using a combination of nuclear and chloroplast single nucleotide polymorphisms (SNPs).
Results  Analysis of nuclear SNPs confirmed hybridization in populations of morphologically intermediate individuals, as well as revealing the existence of cryptic hybrids in ostensibly morphologically pure P. minor populations. Analysis of chloroplast SNPs revealed that this hybridization is unidirectional and suggests that hybrids originate via pollen swamping of P. minor by the more common P. grandiflora .
Main conclusions  Extensive unidirectional hybridization may lead to the extinction of peripheral populations of P. minor where the two species grow sympatrically. Extinction could occur as a result of genetic assimilation where F1s are fertile, or via the removal of unidirectionally pollinated sterile F1s, or by a combination of these processes. This could compromise the ability of species to respond to climate change via habitat tracking, although the final outcome of these processes may ultimately depend on the rate of global climate change and its effect on the species' distributions.  相似文献   

17.
When a process modelling the availability of gametes is included explicitly in population models a critical depensation or Allee effect usually results. Non-spatial models cannot describe clumping and so small populations must be assumed very diffuse. Consequently individuals in small populations experience low contact rates and so reproduction is limited. In Nature invasions into new territory are unlikely to be as diffuse as those described by non-spatial models. We develop pair approximations to a probabilistic cellular automata model with independent pollination and seed setting processes (equivalently mate search and reproduction processes). Each process can be either global (population-wide) or local (within a small neighbourhood) or a mixture of the two. When either process is global the resulting model recaptures the Allee effect found in non-spatial models. However, if both processes are at least partially local we obtain a model in which Allee effects can be avoided altogether if individuals are suitably strong pollinators and colonisers. The Allee effect disappears because small populations are dramatically more clumped when colonisation is local and less wasteful of pollen when pollination is local.  相似文献   

18.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

19.
Synthesis of ecological and evolutionary concepts and tools has led to improved understanding of how diversification, dispersal, community assembly, long‐term coexistence and extinction shape patterns of biological diversity. Phylogeography, with its focus on Quaternary interactions within and between populations, can help elucidate the processes acting between the evolutionary time‐scales on which species arise and the ecological time‐scales on which members of an assemblage interact with each other and their environment. Still, it has yet to be widely incorporated in that synthesis. Here, we highlight three areas where integration of phylogeography with ecological and evolutionary approaches can provide new insights into key questions. First, phylogeography can help clarify the roles of isolation, niche conservatism and environmental stability in generating patterns of alpha‐ and beta‐diversity. Second, phylogeography can help isolate the effects of Quaternary dispersal limitation from other factors driving community assembly and spatial turnover. Third, phylogeography can help identify key processes leading to and resulting from extinction events, including the population dynamics of species range reduction and its effects on the strength and temporal flexibility of networks of species interactions. We conclude with an outlook on the data‐gathering protocols necessary for this collaborative, interdisciplinary research agenda.  相似文献   

20.
* Here, we evaluate the role of pollen limitation and selfing in the maintenance of labile sex expression in subdioecious plant species. * We used a literature survey to explore which factors correlated with a significant occurrence of hermaphrodites in dioecious species. We developed models to explore the selective maintenance of labile sex expression. The models had similar ecological assumptions but differed in the genetic basis of sex lability. * We found that a significant frequency of hermaphrodites was associated with animal pollination, and that hermaphrodites were 'inconstant' males with perfect flowers, suggesting evolution through the gynodioecious pathway. Models showed that a modifier converting pure males into inconstant males could be maintained under a wide range of reduction in both male and female fitness. Pollen limitation and self-fertilization facilitated invasion of the modifier. Depending on the genetics of sex determination, we found pure dioecy, stable subdioecy (trioecy), and situations where inconstant males coexisted with either pure females or pure males. Under selfing and pollen limitation, certain conditions selected for inconstant males which will drive populations to extinction. * We discuss our results in relation to the evolution towards, and the breakdown of, dioecy, and the ecological and evolutionary implications of labile sex expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号