首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the role of lipid peroxidation (LPO) products in the initial phase of stress mediated signaling, we studied the effect of mild, transient oxidative or heat stress on parameters that regulate the cellular concentration of 4-hydroxynonenal (4-HNE). When K562 cells were exposed to mild heat shock (42 degrees C, 30 min) or oxidative stress (50 microM H2O2, 20 min) and allowed to recover for 2 h, there was a severalfold induction of hGST5.8, which catalyzes the formation of glutathione-4-HNE conjugate (GS-HNE), and RLIP76, which mediates the transport of GS-HNE from cells (Awasthi, S., Cheng, J., Singhal, S. S., Saini, M. K., Pandya, U., Pikula, S., Bandorowicz-Pikula, J., Singh, S. V., Zimniak, P., and Awasthi, Y. C. (2000) Biochemistry 39, 9327-9334). Enhanced LPO was observed in stressed cells, but the major antioxidant enzymes and HSP70 remained unaffected. The stressed cells showed higher GS-HNE-conjugating activity and increased efflux of GS-HNE. Stress-pre-conditioned cells with induced hGST5.8 and RLIP76 acquired resistance to 4-HNE and H2O2-mediated apoptosis by suppressing a sustained activation of c-Jun N-terminal kinase and caspase 3. The protective effect of stress pre-conditioning against apoptosis was abrogated by coating the cells with anti-RLIP76 IgG, which inhibited the efflux of GS-HNE from cells, indicating that the cells acquired resistance to apoptosis by metabolizing and excluding 4-HNE at a higher rate. Induction of hGST5.8 and RLIP76 by mild, transient stress and the resulting resistance of stress-pre-conditioned cells to apoptosis appears to be a general phenomenon since it was not limited to K562 cells but was also evident in lung cancer cells, H-69, H-226, human leukemia cells, HL-60, and human retinal pigmented epithelial cells. These results strongly suggest a role of LPO products, particularly 4-HNE, in the initial phase of stress mediated signaling.  相似文献   

2.
Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N6-etheno-2′-deoxyadenosine (?dA) and 3,N4-etheno-2′-deoxycytidine (?dC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ?dA, and ?dC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ?dA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p?p?p?相似文献   

3.
Prolonged hepatic warm ischemia has been incriminated in oxidative stress after reperfusion. However, the magnitude of oxidative stress during ischemia has been controversial. The aims of the present study were to elucidate whether lipid peroxidation progressed during ischemia and to clarify whether oxidative stress during ischemia aggravated the oxidative damage after reperfusion. Rats were subjected to 30 to 120 min of 70% warm ischemia alone or followed by reperfusion for 60 min. Lipid peroxidation (LPO) was evaluated by amounts of phosphatidylcholine hydroperoxide (PC-OOH) and phosphatidylethanolamine hydroperoxide (PE-OOH) as primary LPO products. Total amounts of malondialdehyde and 4-hydroxy-2-nonenal (MDA + 4-HNE), degraded from hydroperoxides, were also determined. PC-OOH and PE-OOH significantly increased at 60 and 120 min ischemia with concomitant increase of oxidized glutathione. These hydroperoxides did not increase at 60 min reperfusion after 60 min ischemia, whereas they did increase at 60 min reperfusion after 120 min ischemia with deactivation of phospholipid hydroperoxide glutathione peroxidase and superoxide dismutase. The amount of MDA + 4-HNE exhibited similar changes, but the velocity of production dropped with ischemic time longer than 60 min. In conclusion, oxidative stress progressed during ischemia and triggered the oxidative injury after reperfusion. Secondary LPO products are less sensitive, especially during ischemia, which may cause possible underestimation and discrepancy.  相似文献   

4.
We used Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia, live or heat-killed, isolated from the airways of children with Cystic Fibrosis, to stimulate human neutrophils (PMN) and rat alveolar macrophages (AM) to produce reactive oxygen metabolites in the presence or absence of Curosurf, a natural porcine lung surfactant. We determined: (1) the amount of lipid peroxidation (LPO) as assessed by the amounts of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE) using the LPO 586 test kit; (2) the production by AM of superoxide with the nitroblue tetrazolium test and (3) of nitric oxide (NO) with the Griess reaction. Stimulation of PMN or AM increases LPO of Curosurf and cell wall lipids. In both types of phagocytes, B. cepacia induced the highest LPO levels followed by P. aeruginosa and S. maltophilia. PMN, stimulated by live bacteria, induced higher LPO than those stimulated by heat-killed bacteria. B. cepacia stimulated AM to produce more superoxide and NO than did P. aeruginosa and S. maltophilia. The high phagocyte-stimulating ability of B. cepacia and its higher surfactant LPO than those of the other bacteria used in this in vitro study may play a role in vivo in the serious clinical condition known as the "Cepacia syndrome".  相似文献   

5.
Carbonyl products were separated and identified in suspensions of rat liver microsomal fractions and in isolated hepatocytes, after stimulation of lipid peroxidation by incubation with the pro-oxidants CCl4 and ADP-iron. The carbonyl products were allowed to react with 2,4-dinitrophenylhydrazine, and the derivatives were extracted and separated by t.l.c. into three zones of non-polar materials, and one fraction of polar derivatives that remained at the origin. Separation of the individual non-polar hydrazones in each zone by h.p.l.c. demonstrated that zone I prepared from microsomal fraction or hepatocytes incubated with CCl4 or ADP-iron contained mainly 4-hydroxyhex-2-enal, 4-hydroxynon-2-enal and 4-hydroxynona-2,5-dienal. Zone III consisted mainly of the alkanals propanal, pentanal and hexanal, the 2-alkenals propenal, pent-2-enal, hex-2-enal, hept-2-enal, oct-2-enal and non-2-enal, the ketones butanone, pentan-2-one and pentan-3-one, and deca-2,4-dienal. Incubation of a microsomal fraction with ADP-iron was much more effective in producing malonaldehyde and other carbonyl products than an incubation with CCl4. Despite such quantitative differences, there were no obvious qualitative differences in the h.p.l.c. spectra obtained from zones I and III. However, the stoichiometric evaluation of fatty acid loss and the production of malonaldehyde and other carbonyls suggests that the pathways of lipid peroxidation triggered by CCl4 and ADP-iron are different. The accumulation of carbonyl products of lipid peroxidation in isolated hepatocytes is strongly affected by their metabolism; in particular, 4-hydroxyalkenals were found to be metabolized very rapidly. Nonetheless, both CCl4 and ADP-iron produced stimulation in the production of malonaldehyde and non-polar carbonyl production. After incubation of rat hepatocytes with CCl4 or ADP-iron it was found that approx. 50% of the total amount of non-polar carbonyls produced during incubation escaped into the external medium. This was not leakage from dead cells, as 90-95% of the hepatocytes had retained their integrity at the end of the incubation. Release of carbonyl products from cells stimulated to undergo lipid peroxidation may be a mechanism for spreading an initial intracellular disturbance to affect critical targets outside the parent cell.  相似文献   

6.
We used Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia, live or heat-killed, isolated from the airways of children with Cystic Fibrosis, to stimulate human neutrophils (PMN) and rat alveolar macrophages (AM) to produce reactive oxygen metabolites in the presence or absence of Curosurf, a natural porcine lung surfactant. We determined: (1) the amount of lipid peroxidation (LPO) as assessed by the amounts of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE) using the LPO 586 test kit; (2) the production by AM of superoxide with the nitroblue tetrazolium test and (3) of nitric oxide (NO) with the Griess reaction. Stimulation of PMN or AM increases LPO of Curosurf and cell wall lipids. In both types of phagocytes, B. cepacia induced the highest LPO levels followed by P. aeruginosa and S. maltophilia. PMN, stimulated by live bacteria, induced higher LPO than those stimulated by heat-killed bacteria. B. cepacia stimulated AM to produce more superoxide and NO than did P. aeruginosa and S. maltophilia. The high phagocyte-stimulating ability of B. cepacia and its higher surfactant LPO than those of the other bacteria used in this in vitro study may play a role in vivo in the serious clinical condition known as the "Cepacia syndrome".  相似文献   

7.
This review begins with the premise that an organism's life span is determined by the balance between two countervailing forces: (i) the sum of destabilizing effects and (ii) the sum of protective longevity-assurance processes. Against this backdrop, the role of electrophiles is discussed, both as destabilizing factors and as signals that induce protective responses. Because most biological macromolecules contain nucleophilic centers, electrophiles are particularly reactive and toxic in a biological context. The majority of cellular electrophiles are generated from polyunsaturated fatty acids by a peroxidation chain reaction that is readily triggered by oxygen-centered radicals, but propagates without further input of reactive oxygen species(ROS). Thus, the formation of lipid-derived electrophiles such as 4-hydroxynon-2-enal (4-HNE) is proposed to be relatively insensitive to the level of initiating ROS, but to depend mainly on the availability of peroxidation-susceptible fatty acids. This is consistent with numerous observations that life span is inversely correlated to membrane peroxidizability, and with the hypothesis that 4-HNE may constitute the mechanistic link between high susceptibility of membrane lipids to peroxidation and shortened life span. Experimental interventions that directly alter membrane composition (and thus their peroxidizability) or modulate 4-HNE levels have the expected effects on life span, establishing that the connection is not only correlative but causal. Specific molecular mechanisms are considered, by which 4-HNE could (i) destabilize biological systems via nontargeted reactions with cellular macromolecules and (ii) modulate signaling pathways that control longevity-assurance mechanisms.  相似文献   

8.
Evidence suggests that aldehydic molecules generated during lipid peroxidation (LPO) are causally involved in most pathophysiological processes associated with oxidative stress. 4-Hydroxy-2-nonenal (4-HNE), the LPO-derived product, is believed to be responsible for much of the cytotoxicity. To counteract the adverse effects of this aldehyde, many tissues have evolved cellular defense mechanisms, which include the aldehyde dehydrogenases (ALDHs). Our laboratory has previously characterized the tissue distribution and metabolic functions of ALDHs, including ALDH3A1, and demonstrated that these enzymes may play a significant role in protecting cells against 4-HNE. To further characterize the role of ALDH3A1 in the oxidative stress response, a rabbit corneal keratocyte cell line (TRK43) was stably transfected to overexpress human ALDH3A1. These cells were studied after treatment with 4-HNE to determine their abilities to: (a) maintain cell viability, (b) metabolize 4-HNE and its glutathione conjugate, (c) prevent 4-HNE-protein adduct formation, (d) prevent apoptosis, (e) maintain glutathione homeostasis, and (f) preserve proteasome function. The results demonstrated a protective role for ALDH3A1 against 4-HNE. Cell viability assays, morphological evaluations, and Western blot analyses of 4-HNE-adducted proteins revealed that ALDH3A1 expression protected cells from the adverse effects of 4-HNE. Based on the present results, it is apparent that ALDH3A1 provides exceptional protection from the adverse effects of pathophysiological concentrations of 4-HNE such as may occur during periods of oxidative stress.  相似文献   

9.
In falciparum malaria, rupture of parasitized RBC liberates hemozoin (HZ), polymerized heme that contains and generates lipoperoxidation products. In HZ and HZ-loaded monocytes 4-HNE attained approx. 50 and 15 microM, respectively. In malaria, HZ-loaded monocytes are precursors of dendritic cells (DC). Here, the role of 4-HNE as inhibitor of DC differentiation was examined. 4-HNE in HZ was quantified after derivatization by HPLC. DC were differentiated in vitro from human monocytes supplemented with GM-CSF/IL-4 and analyzed for surface antigens and 4-HNE-adducts by FACScan after labelling with specific antibodies. HZ-loading, or treatment with 4-HNE induced large numbers of 4-HNE-protein-adducts on the monocyte membrane. As low as 10 nM 4-HNE inhibited up-regulation of functionally important DC differentiation markers. 1 microM 4-HNE elicited inhibition of up-regulation of DC differentiation markers as follows: MHC-class I and II, -29% and -40%; CD1a, -16%; CD40, -25%; CD54, -27%; and CD83 (the most important DC differentiation marker), -45%, with no signs of apoptosis. The sequence of additions was important, as the inhibitory effect was reduced when 4-HNE was added after GM-CSF/IL-4, indicating that GM-CSF/IL-4 receptors could be modified by 4-HNE. In conclusion, inhibition of DC differentiation by 4-HNE may play a role in malaria immunodepression.  相似文献   

10.
B Xiao  S P Singh  B Nanduri  Y C Awasthi  P Zimniak  X Ji 《Biochemistry》1999,38(37):11887-11894
mGSTA4-4, a murine glutathione S-transferase (GST) exhibiting high activity in conjugating the lipid peroxidation product 4-hydroxynon-2-enal (4-HNE) with glutathione (GSH), was crystallized in complex with the GSH conjugate of 4-HNE (GS-Hna). The structure has been solved at 2.6 A resolution, which reveals that the active site of one subunit of the dimeric enzyme binds GS-Hna, whereas the other binds GSH. A marked asymmetry between the two subunits is evident. Most noticeable are the differences in the conformation of arginine residues 69 and 15. In all GST structures published previously, the guanidino groups of R69 residues from both subunits stack at the dimer interface and are related by a (pseudo-) 2-fold axis. In the present structure of mGSTA4-4, however, the two R69 side chains point in opposite directions, although their guanidino groups remain in contact. In the subunit with bound GSH, R69 also interacts with R15, and the guanidino group of R15 points away from the active site, whereas in the subunit that binds GS-Hna, R15 pivots into the active site, which breaks its interaction with R69. According to our previous results [Nanduri et al. (1997) Arch. Biochem. Biophys. 335, 305-310], the availability of R15 in the active site assists the conjugation of 4-HNE with GSH. We propose a model for the catalytic mechanism of mGSTA4-4 in conjugating 4-HNE with GSH-i.e., the guanidino group of R15 is available in the active site of only one subunit at any given time and the stacked pair of R69 residues act as a switch that couples the concerted movement of the two R15 side chains. The alternate occupancy of 4-HNE in the two subunits has been confirmed by our kinetic analysis that shows the negative cooperativity of mGSTA4-4 for 4-HNE. Disruption of the signaling between the subunits by mutating the R69 residues released the negative cooperativity with 4-HNE.  相似文献   

11.
H R Petty  W Dereski 《Biochemistry》1985,24(15):4141-4148
A fluorescein- and lactoperoxidase-conjugated ferritin-anti-ferritin immune complex has been prepared for cell surface labeling experiments on immune recognition and effector function. Lactoperoxidase (LPO) has been covalently coupled to affinity-purified anti-ferritin antibodies with p-benzoquinone by a modified version of the method of Ternynck and Avrameas [Ternynck, T., & Avrameas, S. (1976) Ann. Immunol. (Paris) 127C, 197]. The conjugate is a heterodimer of Mr230 000 with linkages to either or both of the heavy and light chains of the antibody, as judged by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence and presence of 2-mercaptoethanol. The conjugate retains antibody-binding activity as measured by a quantitative precipitin assay. When incorporated into immune complexes, the modified antibody also retains Fc receptor recognition ability as determined by erythrocyte-antibody rosette inhibition assays. Electron microscopy demonstrated that the antigen, ferritin, was monodisperse with complete apoprotein sheaths surrounding the core. Ferritin-anti-ferritin-LPO complexes were formed in 4-fold antigen excess. Complexes were verified by fluorescence and electron microscopy. Immune complexes were masked with "cold" iodine by use of the endogenous LPO activity. The complexes bound to cells at 4 degrees C as shown by electron microscopy and fluorescence video/intensification microscopy. The LPO delivered to the cell surface in this fashion can be utilized to iodinate the surface with 125I. Under saturation conditions, the labeling with local LPO delivery followed by SDS-PAGE and autoradiography is identical with labeling with free LPO. Labeling has also been conducted under conditions of substrate deficit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. Methods using t.l.c. and high-pressure liquid chromatography (h.p.l.c.) have been used to separate the complex variety of substances possessing a carbonyl function that are produced during lipid peroxidation. 2. The major type of lipid peroxidation studied was the ADP-Fe2+-stimulated peroxidation of rat liver microsomal phospholipids. Preliminary separation of the polar and non-polar products was achieved by t.l.c.: further separation and identification of individual components was performed by h.p.l.c. Estimations were performed on microsomal pellets and the supernatant mixture after incubation of microsomes for 30 min at 37 degrees C. 3. The polar fraction was larger than the non-polar fraction when expressed as nmol of carbonyl groups/g of liver. In the non-polar supernatant fraction the major contributors were n-alkanals (31% of the total), alpha-dicarbonyl compounds (22%) and 4-hydroxyalkenals (37%) with the extraction method used. 4. Major individual contributors to the non-polar fraction were found to be propanal, 4-hydroxynonenal, hexanal and oct-2-enal. Other components identified include butanal, pent-2-enal, hex-2-enal, hept-2-enal, 4-hydroxyoctenal and 4-hydroxyundecenal. The polar carbonyl fraction was less complex than the non-polar fraction, although the identities of the individual components have not yet been established. 5. Since these carbonyl compounds do not react significantly in the thiobarbituric acid reaction, which largely demonstrates the presence of malonaldehyde, it is concluded that considerable amounts of biologically reactive carbonyl derivatives are released in lipid peroxidation and yet may not be picked up by the thiobarbituric acid reaction.  相似文献   

13.
A reversed-phase high-performance liquid chromatographic (HPLC) using ultraviolet (UV) absorbance detection method for simultaneous determination of clofibrate (I) and its major metabolite clofibric acid (II) in human plasma has been developed to support a clinical study. I, II and internal standard (I.S., III) are isolated from human plasma by 96-well solid-phase extraction (SPE) C(18)z.ccirf;AR plate and quantified by direct injection of the SPE eluent onto the HPLC with UV detection wavelength at 230 nm. Two chromatographic methods, isocratic and step gradient, have been validated from 1.0 to 100.0 microg/ml and successfully applied to plasma sample analysis for a clinical study. The lower limit of quantitation (LLOQ) is 1.0 microg/ml for both I and II when 500 microl plasma sample is processed. Sample collection and preparation is conducted at 5 degrees C to minimize the hydrolysis of I to II in human plasma.  相似文献   

14.
《Reproductive biology》2020,20(1):63-74
In this study, we investigated the mechanism of oxidative damage induced by nicotine and the efficacy of vitamin E, an integral component of cellular membranes, against the damage in follicular/granulosa cells of rat ovaries. The animals were randomly divided into 4 groups; control, nicotine, nicotine + vitaminE, vitamin E (n = 8, per each group). Nicotine and vitamin E were administrated intraperitoneally 1 mg/kg/day and 200 mg/kg/day, respectively, once daily for 2 weeks. Nicotine increased lipid peroxide levels such as lipid peroxide (LPO) and malondialdehyde (MDA) in serum, 4-hydroxynonenal (4-HNE) in granulosa cells and apoptotic granulosa cells in the ovary. Positive correlation occurred between the findings of LPO markers and TUNEL labeling. Level of 17-β estradiol (E2), number of follicles and granulosa cell proliferation decreased with nicotine treatment and negatively correlated with LPO levels and apoptosis in granulosa cells. Ultrastructural study of nicotine treated rat ovaries showed mitochondrial damage and autophagosomes in the granulosa cells. The administration of nicotine and vitamin E together, revealed an increase in E2 level, granulosa cell proliferation and the number of healthy follicles associated with decrease in LPO, MDA, 4-HNE levels and TUNEL reactivity in a manner correlated with each other, compared to the nicotine group. Vitamin E showed to alleviate mitochondrial damage and decrease the number of autophagosomes in granulosa cells. These results suggest that lipid peroxidation may be one of the nicotine’ damage mechanisms on folliculogenesis and vitamin E may prevent nicotine-induced follicular damage through reducing lipid peroxidation level in granulosa cells.  相似文献   

15.
Role of lipid peroxidation products, particularly 4-hydroxynonenal (4-HNE) in cell cycle signaling is becoming increasingly clear. In this article, recent studies suggesting an important role of 4-HNE in stress mediated signaling for apoptosis are critically evaluated. Evidence demonstrating the modulation of UV, oxidative stress, and chemical stress mediated apoptosis by blocking lipid peroxidation by the alpha-class glutathione S-transferases (GSTs) is presented which suggest an important role of these enzymes in protection against oxidative stress and a role of lipid peroxidation products in stress mediated signaling. Overexpression of 4-HNE metabolizing GSTs (mGSTA4-4, hGSTA4-4, or hGST5.8) protects cells against 4-HNE, oxidative stress (H(2)O(2) or xanthine/xanthine oxidase), and UV-A mediated apoptosis by blocking JNK and caspase activation suggesting a role of 4-HNE in the mechanisms of apoptosis caused by these stress factors. The intracellular concentration of 4-HNE appears to be crucial for the nature of cell cycle signaling and may be a determinant for the signaling for differentiation, proliferation, transformation, or apoptosis. The intracellular concentrations of 4-HNE are regulated through a coordinated action of GSTs (GSTA4-4 and hGST5.8) which conjugate 4-HNE to GSH to form the conjugate (GS-HNE) and the transporter 76 kDa Ral-binding GTPase activating protein (RLIP76), which catalyze ATP-dependent transport of GS-HNE. A mild stress caused by heat, UV-A, or H(2)O(2)with no apparent effect on the cells in culture causes a rapid, transient induction of hGST5.8 and RLIP76. These stress preconditioned cells acquire ability to metabolize and exclude 4-HNE at an accelerated pace and acquire relative resistance to apoptosis by UV and oxidative stress as compared to unconditioned control cells. This resistance of stress preconditioned cells can be abrogated by coating the cells with anti-RLIP76 antibodies which block the transport of GS-HNE. These studies and previous reports discussed in this article strongly suggest a key role of 4-HNE in stress mediated signaling.  相似文献   

16.
Production of oxygen radicals by stimulated phagocytes followed by surfactant lipid peroxidation (LPO) and loss of surfactant function have all been implicated in the pathogenesis of acute lung injury. We studied the interactions between natural lung surfactant (Curosurf) and neutrophils in vitro , and compared various antioxidants; (superoxide dismutase (SOD), vitamin E, vitamin C, ebselen and melatonin), or combinations of them in duplicate and triplicate regarding their ability to decrease superoxide production and the peroxidation level of surfactant caused by activated phagocytes. The superoxide production of neutrophils activated by Candida albicans was measured with the nitroblue tetrazolium (NBT) test. The subsequent LPO was estimated as the content of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE). We found that lung surfactant decreased the superoxide production by activated neutrophils (29.7%) and that Curosurf was peroxidized with elevated MDA/4-HNE values. With supplements of antioxidants (except vitamin C), superoxide radical production and the surfactant LPO level fell in a dose-dependent manner. The protective effect of the antioxidants differed in each test. SOD had a slight effect in both tests. The findings with vitamin E, melatonin and ebselen were similar. The best combination was that of a natural and a synthetic antioxidant (melatonin-ebselen) with a 60% decrease in comparison to the corresponding control. These findings suggest that antioxidants, particularly in combination, prevent LPO of lung surfactant.  相似文献   

17.
Production of oxygen radicals by stimulated phagocytes followed by surfactant lipid peroxidation (LPO) and loss of surfactant function have all been implicated in the pathogenesis of acute lung injury. We studied the interactions between natural lung surfactant (Curosurf) and neutrophils in vitro, and compared various antioxidants; (superoxide dismutase (SOD), vitamin E, vitamin C, ebselen and melatonin), or combinations of them in duplicate and triplicate regarding their ability to decrease superoxide production and the peroxidation level of surfactant caused by activated phagocytes. The superoxide production of neutrophils activated by Candida albicans was measured with the nitroblue tetrazolium (NBT) test. The subsequent LPO was estimated as the content of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE). We found that lung surfactant decreased the superoxide production by activated neutrophils (29.7%) and that Curosurf was peroxidized with elevated MDA/4-HNE values. With supplements of antioxidants (except vitamin C), superoxide radical production and the surfactant LPO level fell in a dose-dependent manner. The protective effect of the antioxidants differed in each test. SOD had a slight effect in both tests. The findings with vitamin E, melatonin and ebselen were similar. The best combination was that of a natural and a synthetic antioxidant (melatonin-ebselen) with a 60% decrease in comparison to the corresponding control. These findings suggest that antioxidants, particularly in combination, prevent LPO of lung surfactant.  相似文献   

18.
Selective iodination and polypeptide composition of pinocytic vesicles   总被引:30,自引:15,他引:15       下载免费PDF全文
We describe a method for the specific radioiodination of pinocytic vesicles (PVs) based upon the simultaneous endocytosis of lactoperoxidase (LPO) and glucose oxidase (GO). Initial experiments indicated that LPO was interiorized by the macrophage cell line J774 by fluid phase pinocytosis and without detectable binding to the plasma membrane (PM). Interiorization varied linearly with enzyme concentration and exposure time, was temperature dependent, and was undetectable at 4 degrees C. Employing EM cytochemistry, LPO activity was restricted to PVs after a 3- to 5-min pulse at 37 degrees C. These results formed the basis of the method for iodinating the luminal surface of PVs: 5-min exposure to both LPO and GO at 37 degrees C followed by washes and iodination (addition of 125I and glucose) at 4 degrees C. Enzyme-dependent incorporation of iodide into the polypeptides of both PV membrane and contents occurred. Several lines of evidence indicated that there was selective labeling of PV as opposed to PM. Iodination did not occur if the pinocytic uptake of LPO ad GO was inhibited by low temperature. EM autoradiography showed a cytoplasmic localization of grains, whereas a clear PM association was evident with surface labeling. LPO was iodinated only after PV labeling and was present within organelles demonstrating latency. After PV iodination, > 75% of several labeled membrane antigens could be immunoprecipitated by monoclonal antibodies only after cell lysis. In contrast, all labeled antigens were accessible to antibody on intact cells after surface labeling. The polypeptide compositions of PM and PV membrane were compared by SDS polyacrylamide gel electrophoresis and by quantitative immune precipitation using a panel of anti-J774 monoclonal antibodies. The electrophoretic profiles of iodinated proteins (15-20 bands) were strikingly similar in NP-40 lysates of both PV and PM iodinated cells. In addition, eight membrane antigens examined by immune precipitation, including the trypsin-resistant immunoglobulin (Fc) receptor and the H-2Dd histocompatibility antigen, were found to be iodinated to the same relative extents by both labeling procedures. We conclude that PV membrane is formed from a representative sample of PM polypeptide components.  相似文献   

19.
The formation, reactivity and toxicity of aldehydes originating from lipid peroxidation of cellular membranes are reviewed. Very reactive aldehydes, namely 4-hydroxyalkenals, were first shown to be formed in autoxidizing chemical systems. It was subsequently shown that 4-hydroxyalkenals are formed in biological conditions, i.e. during lipid peroxidation of liver microsomes incubated in the NADPH-Fe systems. Our studies carried out in collaboration with Hermann Esterbauer which led to the identification of 4-hydroxynonenal (4-HNE) are reported. 4-HNE was the most cytotoxic aldehyde and was then assumed as a model molecule of oxidative stress. Many other aldehydes (alkanals, alk-2-enals and dicarbonyl compounds) were then identified in peroxidizing liver microsomes or hepatocytes. The in vivo formation of aldehydes in liver of animals intoxicated with agents that promote lipid peroxidation was shown in further studies. In a first study, evidence was forwarded for aldehydes (very likely alkenals) bound to liver micro-somal proteins of CCl4 or BrCCl3-intoxicated rats. In a second study, 4-HNE and a number of other aldehydes (alkanals and alkenals) were identified in the free (non-protein bound) form in liver extracts from bromoben-zene or ally-1 alcohol-poisoned mice. The detection of free 4-HNE in the liver of CCl4 or BrCCl3-poisoned animals was obtained with the use of an electrochemical detector, which greatly increased the sensitivity of the HPLC method. Furthermore, membrane phospho-lipids bearing carbonyl groups were demonstrated in both in vitro (incubation of microsomes with NADPH-Fe) and in vivo (CCl4 or BrCCl3 intoxication) conditions. Finally, the results concerned with the histochemical detection of lipid peroxidation are reported. The methods used were based on the detection of lipid peroxidation-derived carbonyls. Very good results were obtained with the use of fluorescent reagents for carbonyls, in particular with 3-hydroxy-2-naphtoic acid hydrazide (NAH) and analysis with confocal scanning fluorescence microscopy with image video analysis. The significance of formation of toxic aldehydes in biological membranes is discussed.  相似文献   

20.
4-Hydroxy-2-trans-nonenal (4-HNE), one of the major end products of lipid peroxidation, has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. We show for the first time that incorporation of 4-HNE-metabolizing glutathione S-transferase (GST) isozyme, hGSTA4-4, into adherent cell lines HLE B-3 and CCL-75, by either cDNA transfection or microinjection of active enzyme, leads to their transformation. The dramatic phenotypic changes due to the incorporation of hGSTA4-4 include rounding of cells and anchorage-independent rapid proliferation of immortalized, rounded, and smaller cells. Incorporation of the inactive mutant of hGSTA4-4 (Y212F) in cells by either microinjection or transfection does not cause transformation, suggesting that the activity of hGSTA4-4 toward 4-HNE is required for transformation. This is further confirmed by the fact that mouse and Drosophila GST isozymes (mGSTA4-4 and DmGSTD1-1), which have high activity toward 4-HNE and subsequent depletion of 4-HNE, cause transformation whereas human GST isozymes hGSTP1-1 and hGSTA1-1, with minimal activity toward 4-HNE, do not cause transformation. In cells overexpressing active hGSTA4-4, expression of transforming growth factor beta1, cyclin-dependent kinase 2, protein kinase C betaII and extracellular signal regulated kinase is upregulated, whereas expression of p53 is downregulated. These studies suggest that alterations in 4-HNE homeostasis can profoundly affect cell-cycle signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号