首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed immunostaining for vitamin D binding protein (DBP) in rat hypothalamus. Part of the supraoptic and of the paraventricular neurons showed DBP immunoreactivity, in part colocalized with Arg-vasopressin. DBP was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. A portion of ependymal cells, the choroids plexus epithelium and some of the endocrine cells in the anterior pituitary lobe contained DBP immunoreactivity. In situ hybridization of semithin sections with a synthetic oligonucleotide probe to DBP mRNA resulted in staining of magnocellular hypothalamic neurons, but not of ependymal cells or anterior lobe cells. Our observations indicate an intrinsic expression of DBP in the rat hypothalamus. DBP may be synthesized and transported along with the classical neurohypophyseal hormones. The multiple locations of DBP-expressing neurons indicate multiple functional properties: DBP may be released from in the posterior lobe, it may act as a hypophyseotropic factor and as a central neuroactive substance.  相似文献   

2.
Summary Three sites of somatostatin-synthesizing perikarya, or a related antigen, were determined by immunofluorescence in the hypothalamus of the tadpole, Alytes obstetricans (Amphibia, Anura). Two sites of neurosecretory perikarya were localized in the preoptic nuclei of the anterior hypothalamus; the axons extended either to the anterior diencephalon or to the median eminence and the pituitary. The third site was found in the posterior hypothalamus. These neurosecretory cells showed a strong immunofluorescent reaction; their axons all terminated at the level of the median eminence. Somatostatin cells were only found in intact or hypophysectomized tadpoles given somatotropin (STH). The strong reaction observed in hypophysectomized tadpoles was possibly due to the loss of the terminal portion of the neurosecretory pathway (median eminence and pituitary) by which the agent is transported to the site of discharge.  相似文献   

3.
We studied the development of direct axonal connections of the accessory neurosecretory hypothalamic nuclei with the posterior pituitary lobe on the fixed rat brain from day 15 of embryogenesis until day 10 of postnatal development using the retrograde diffusion method of the lipophilic fluorescent carbocyanine dye 1,1"-dioctadecyl-3,3,3",3"-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The marker was applied onto the posterior pituitary lobe and, after incubation in a fixative, fluorescing bodies of nerve cells were visualized in the hypothalamus. Neuronal axons of the retrochiasmatic nucleus were the first of the accessory nuclei to ingrow in the posterior pituitary lobe (on days 16–17 of embryogenesis). Neurons of the circular and dorsolateral nuclei and the nuclei of the median bundle of the forebrain sent their axons to the posterior pituitary lobe starting from the first days of postnatal development. No direct connections of the anterior commissure and perifornical accessory nuclei with the posterior pituitary lobe were found in perinatal development. These facts are discussed in the light of concepts about the different functional role of accessory peptidergic hypothalamic nuclei in rats.  相似文献   

4.
We studied the development of direct axonal connections of the accessory neurosecretory hypothalamic nuclei with the posterior pituitary lobe on the fixed rat brain from day 15 of embryogenesis until day 10 of postnatal development using the retrograde diffusion method of the lipophilic fluorescent carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The marker was applied onto the posterior pituitary lobe and, after incubation in a fixative, fluorescing bodies of nerve cells were visualized in the hypothalamus. Neuronal axons of the retrochiasmatic nucleus were the first of the accessory nuclei to ingrow in the posterior pituitary lobe (on days 16-17 of embryogenesis). Neurons of the circular and dorsolateral nuclei and the nuclei of the median bundle of the forebrain sent their axons to the posterior pituitary lobe starting from the first days of postnatal development. No direct connections of the anterior commissure and perifornical accessory nuclei with the posterior pituitary lobe were found in perinatal development. These facts are discussed in the light of concepts about the different functional role of accessory peptidergic hypothalamic nuclei in rats.  相似文献   

5.
We observed coexistence of corticosteroid-binding globulin (CBG) with vasopressin (VP) and oxytocin (OT) in magnocellular neurons in rat hypothalamus by combined immunoperoxidase staining and immunofluorescence. A portion of the supraoptic and of the paraventricular neurons showed double immunostaining of CBG with either VP or with OT. CBG staining was intensified by pretreating animals with colchicine to block axonal transport. CBG was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. Single ependymal cells and some of the endocrine cells in the anterior lobe contained specific CBG immunoreactivity. IN SITU hybridization of semithin sections with a synthetic oligonucleotide probe to CBG mRNA provided staining of magnocellular hypothalamic neurons, but not ependymal cells or anterior lobe cells. Western blots of CBG extracted by affinity chromatography from hypothalamus homogenates showed a band at approximately 50 kDa. Our observations indicate the intrinsic expression of CBG in peptidergic hypothalamus neurons in rat. The multiple locations of CBG-expressing neurons indicate multiple functional properties, probably exceeding the role of a mere steroid transporter. CBG is likely to be subject to axonal transport and secretion in a neuropeptide-like fashion, perhaps involved in neuroendocrine regulation, which may include stress responses.  相似文献   

6.
Bilateral electrolytic destruction of the paramedian zones of the caudal part of the tegmentum mesencephali caused an increase in the number of neurosecretory cells with low functional activity and the appearance of degenerating forms in the supraoptic nucleus of the hypothalamus (mainly in the medial part of the nucleus, adjacent to the optic chiasma); destruction of individual Herring's bodies was observed in the posterior lobe of the pituitary. The subnormal content of neurosecretory substance in all parts of the supraoptico-hypophyseal neurosecretory system was matched by a low plasma level of vasopressin-antidiuretic hormone. In animals with destructive lesions in the tegmentum mesencephali exposure to nociceptive stimulation activated mainly the neurosecretory cells in the lateral part of the supraoptic nucleus; the loss of neurosecretion from the posterior pituitary was partial; the plasma neurohormone level was much lower than in the control animals after nociceptive stimulation. It is postulated that changes in the response of the supraoptico-hypophyseal system to stress were probably the result of interruption of afferent pathways to the hypothalamus from the tegmentum mesencephali. The result of these experiments suggest that the paramedian zones of the tectum mesencephali exert a modulating influence on the function of this system during stress.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 157–164, March–April, 1977.  相似文献   

7.
The distribution of vasotocin and mesotocin in the pituitary and central nervous system in male chickens was determined using radioimmunoassays. Neither peptide was detected in the pineal. Mesotocin, but not vasotocin, was detected in the cerebellum. Both peptides were found in the septal area, archistriatum, paleostriatum, optic lobe, anterior, medial and posterior hypothalamus, midbrain, pons, medulla oblongata, and the anterior and posterior pituitary. Equal amounts of the 2 peptides were present in the septal area, archistriatum and anterior hypothalamus whereas vasotocin was more abundant (2- to 10-fold) in the paleostriatum, optic lobe, midbrain, and pituitary. The amount of mesotocin was about twice that of vasotocin in the medulla oblongata and the medial and posterior hypothalamus. The wide distribution of vasotocin and mesotocin in extrahypothalamic sites in the central nervous system suggests that the peptides may, as in mammals, have a role in a variety of autonomic and endocrine regulatory processes in chickens.  相似文献   

8.
9.
With the aid of morphometric and histochemical methods a study was made of the hypothalamo-hypophyseal neurosecretory system of rabbits in anaphylactic shock. The following occurred in rabbits which survived the shock: an enlargement of the perikarions and reduction in the size of the nuclei and nucleoli of the neurosecretory cells; the content of the neurosecretory substance was increased in the whole neurosecretory system. In rabbits which perished from shock the nuclei and the nucleoli of the neurosecretory cells diminished to a lesser extent, perikarion measurements remained unchanged and the content of the neurosecretory substance in the posterior lobe of the hypophysis fell. Thus, in the animals which survived the shock the processes of synthesis of the neurohormones by the neurosecretory cells were sharply activated, but the secretion of the neurohormones from the posterior lobe of the hypophysis was inhibited; in animals which perished from shock the activation of the hormone formation in the neurosecretory cells was less pronounced, but the processes of the secretion of the neurohormones from the posterior lobe were apparently intensified.  相似文献   

10.
The development of projections of the hypothalamic nuclei into the posterior lobe of the pituitary was studied on the fixed brain of rat fetuses from day 15 until day 19 of embryogenesis using retrograde staining with the fluorescent carbocyanine dye DiI. The formation of connections of the supraoptic and retrochiasmatic nuclei of the hypothalamus with the posterior lobe of the pituitary takes place during prenatal development on days 15 and 16-17, respectively, while only an insignificant number of the paraventricular nucleus neurons send their axons to the posterior lobe of the pituitary in rat fetuses. These facts suggest different temporal involvement of the above nuclei in formation of the hypothalamic-hypophysial neurosecretory system in rat fetuses.  相似文献   

11.
The neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. have been described on the basis of in situ preparations and histological sections employing the paraldehyde fuchsin (PF) and performic acid-victoria blue (PAVB) techniques. In the brain of N. viridula, there are two medial groups–each consisting of five neurosecretory cells which belong to A-type. The lateral neurosecretory cells are absent. The axons of the two groups of medial neurosecretory cells (MNC) compose the two bundles of neurosecretory pathways (NSP) that decussate in the anterodorsal part of the protocerebrum. The two pathways, after the cross-over, run deep into the protocerebrum and deutocerebrum and emerge as NCC-I from the tritocerebrum. The nervi corporis cardiaci-I (NCC-I) of each side which are heavily loaded with NSM terminate in the aorta wall. Thus, the neurosecretory material (NSM), elaborated in the medial neurosecretory cells of the brain, is stored in the aortic wall and nervi corporis cardiaci-I (NCC-I). The NCC-II are very short nerves that originate from the tritocerebrum and terminate in the corpora cardiaca (CC) of their side. Below the aorta, but dorsal to the oesophagus, lie two oval or spherical corpora cardiaca. A corpus allatum (CA) lies posterior to the corpora cardiaca (CC). The corpora cardiaca do not contain NSM; only the intrinsic secretion of their cells has been occasionally observed which stains orange or green with PF staining method. The corpus allatum sometimes exhibits PF positive granules of cerebral origin. A new connection between the corpus allatum and aorta has been recorded. The suboesophageal ganglion contains two neurosecretory cells of A-type which, in structure and staining behaviour, are similar to the medial neurosecretory cells of the brain. The course and termination of axons of suboesophageal ganglion neurosecretory cells, and the storage organ for the secretion of these cells have been reported. It is suggested that the aortic wall and NCC-I axons function as neurohaemal organ for cerebral and suboesophageal secretions.  相似文献   

12.
Fifty-one non-neoplastic human pituitary glands, including examples with Crooke's hyalinization or amyloidosis, were examined by an immunoperoxidase method using antibodies to keratin, vimentin, neurofilaments (NFs), glial fibrillary acidic protein (GFAP), desmin, actin, S-100 protein and a variety of pituitary hormones. It was confirmed that most of the epithelial cells in the pituitary gland express keratin immunoreactivity. These cells included endocrine cells in the anterior lobe, endocrine cells and squamous metaplastic cells in the pars tuberalis, columnar and ciliated epithelia forming follicular structures and salivary-type epithelium in the pars intermedia, and anterior lobe cells infiltrating the posterior lobe. This study also demonstrated that keratin and NFs may be co-expressed in endocrine cells in the pituitary anterior lobe, that keratin, vimentin and GFAP may be co-expressed in the epithelial cells forming cyst-like follicle in the pars intermedia, and that vimentin and GFAP may be co-expressed in folliculo-stellate cells and pituicytes. In addition, the GFAP and S-100 protein-negative high columnar epithelium in the pars intermedia tended to be positive for adrenocorticotropic hormone and melanocyte stimulating hormone, while the low columnar epithelium with the co-expression of GFAP and S-100 protein was negative for pituitary hormones.  相似文献   

13.
The isolation and purification of a 21,000-Da (pI 4.9) novel protein from porcine anterior pituitary and whole human pituitary is described. Comparison of the NH2-terminal sequence of the first 77 and 81 residues of the human and porcine homologs shows only one conservative substitution at residue 12, namely an Ala for a Thr between these two species. Such high sequence homology is also reflected in their amino acid composition. A computer data-bank search using a mutation data matrix and comparison with 338,327 segments of proteins revealed that this substance should be classified as belonging to a new protein superfamily. Immunocytochemical staining, using an antibody produced against a synthetic fragment, revealed the presence of immunostainable material in the anterior and posterior lobe of the pituitary and in the supraoptic nucleus of the hypothalamus. No staining was observed in the intermediate lobe of the pituitary. Furthermore, purified neurointermediate lobe secretory granule preparations were also shown to contain this novel polypeptide.  相似文献   

14.
15.
A novel pituitary protein called 7B2 was localized in rat pituitary and brain by immunocytochemistry (unlabeled antibody technique). Immunoreactive material was present in the secretory cells of anterior and intermediate lobes and in neural structures of the posterior lobe of the hypophysis. 7B2-immunoreactive neurons were evident within the hypothalamus in the supraoptic nucleus, paraventricular nucleus (magnocellular and parvocellular parts), and lateral hypothalamus. Immunoreactive nerve fibers were seen within the internal and external zone of the median eminence. Among extrahypothalamic regions, the substantia nigra, dorsal tegmental nucleus, cuneiform nucleus, dorsal parabrachial nucleus, spinal tract trigeminal nerve, interior olive, solitary nucleus, and layers I and II of the spinal cord contained 7B2-immunoreactive material. This anatomical distribution suggests a role for 7B2 in endocrine and autonomic functions.  相似文献   

16.
17.
Immunohistochemical methods were employed to investigate the cellular and ultrastructural localization of the gap junction protein connexin43 (Cx43) in rat pituitary. Western blots of pituitary homogenates probed with anti-Cx43 antibodies showed the presence of Cx43 in both anterior and posterior pituitary lobes. By light microscopy (LM), Cx43-immunoreactive (Cx43-IR) puncta were found in all areas of the posterior lobe, but at greater concentrations in peripheral regions of this structure. By electron microscopy (EM), immunogold labelling for Cx43 was seen at gap junctions between thin cytoplasmic processes of pituicytes. No immunoreactivity was detected in the intermediate lobe. The anterior lobe contained puncta similar to but more sparsely scattered than those in the posterior lobe, and by EM analysis these were demonstrated to correspond to labelled gap junctions between stellate cells. In addition, anti-Cx43 antibodies produced intracellular labelling in a small percentage of endocrine cells, which were distributed throughout the anterior lobe and determined by double immunostaining methods to be cells containing luteinizing hormone. By EM, labelling within these cells was associated with predominantly large secretory granules and other loosely organized organelles. The results indicate that gap junctions in the pituitary are composed of Cx43 and that this or a related protein may have a novel intracellular function within gonadotrophs.  相似文献   

18.
The pars distalis of the avian adenohypophysis consists of well-defined cephalic and caudal lobes which are distinct in their cellular constituents. Immunocytochemical investigations on the pituitary hormones of the pars distalis of the Japanese quail reveal five types of secretory cells, adenocorticotropin (ACTH) cells, prolactin (PRL) cells, thyroid-stimulating hormone (TSH) cells, growth hormone GH (STH) cells, and FSH/LH (gonadotropic) cells. The ACTH cells, TSH cells, and PRL cells are restricted to the cephalic lobe, and GH (STH) cells are confined to the caudal lobe, while FSH/LH cells are distributed throughout the cephalic and caudal lobes. The median eminence of birds has distinct anterior and posterior divisions, each with different neuronal components. The avian hypophysial portal vessels also consists of two groups, anterior and posterior. The peculiar arrangement and distribution of the avian hypophysial portal vessels are possibly related to the distribution of neuropeptides in the two divisions of the median eminence and to the cytological and functional differentiation of two lobes of the pars distalis. The localization of perikarya and fibers containing luteinizing hormone releasing hormone (LHRH), somatostatin, vasotocin, mesotocin, corticotropin-releasing factor (CRF), vasoactive intestinal polypeptide (VIP), glucagon, metenkephalin, and substance P in the hypothalamus and median eminence of the Japanese quail has been investigated by means of immunohistochemistry using antisera against the respective neuropeptides. LHRH-, somatostatin-, VIP-, met-enkephalin-, and substance P-immunoreactive fibers are localized in the external layer of the anterior and posterior divisions of the median eminence, while CRF- and vasotocin-reactive fibers are demonstrated only in the external layer of the anterior division of the median eminence. The metenkephalin fibers are thicker in the anterior median eminence but the substance P fibers are more abundant in the posterior division. Mesotocin fibers occur only in the internal layer of the median eminence and neural lobe.  相似文献   

19.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

20.
Ancestral TSH mechanism signals summer in a photoperiodic mammal   总被引:2,自引:0,他引:2  
In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号