首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the measurements of the histone fluorescence parameters to study the influence of the ionic strength on histone-DNA and histone-histone interactions in reconstructed nucleosomes. The ionic strength increase lead to the two-stage nucleosome dissociation. The dimer H2A-H2B dissociates at the first stage and the tetramer (H3-H4)2 at the second one. The dimer H2A-H2B dissociation from nucleosome is a two-stage process also. The ionic bonds between (H2A-H2B) histone dimer and DNA break at first and then the dissociation of dimer from histone tetramer (H3-H4)2 occurs. According to the proposed model the dissociation accompanying a nucleosome "swelling" and an increase of DNA curvature radius. It was shown that the energy of electrostatic interactions between histone dimer and DNA is sufficiently less than the energy of dimer-tetramer interaction. We propose that the nucleosome DNA ends interact with the dimer and tetramer simultaneously. The calculated number (approximately 30 divided by 40) of ionic bonds between DNA and histone octamer globular part practically coincides with the number of exposed cationic groups on the surface of octamer globular head. On this basis we have assumed that the spatial distribution of these groups is precisely determined, which explains the high evolutionary conservatism of the histone primary structure.  相似文献   

2.
The salt-dependent structural changes of the histone octamer in complex with high-molecular-weight DNA have been studied by fluorescent spectroscopy. Changes in both the spectra maximum position and anisotropy of the histone tyrosine fluorescence reveal structural transitions in nucleosome within the ranges of 0.5-3 mM and 20-30 mM NaCl. Comparison of the octamer fluorescent parameters in complex with DNA as well as in a free state permits to interpret the revealed structural transitions as a change in degree of contacts stability between (H2A-H2B) dimer and (H3-H4)2 tetramer. More pronounced conformational changes in histone octamer are observed under the conditions of polynucleosome fibers interaction within the range of physiological ionic strength (100-600 mM NaCl). As far as fluorescent parameters are concerned, the aforementioned changes are connected with entire destruction of (H2A-H2B) dimer specific contacts with (H3-H4)2 tetramer. The obtained results suggest the possibility of existence of different structural states of histone octamer in the chromatin composition including those which are quite dissimilar from the octamer structure in the 2M NaCl solution.  相似文献   

3.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

4.
5.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

6.
7.
Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined locations within the nucleosome to dissect and compare the structural transitions of a H2A.Z containing and a canonical nucleosome in response to increasing ionic strength. We show that the peripheral regions of the DNA dissociate from the surface of the histone octamer at relatively low ionic strength, under conditions where the dimer-tetramer interaction remains unaffected. At around 550 mm NaCl, the (H2A-H2B) dimer dissociates from the (H3-H4)(2) tetramer-DNA complex. Significantly, this latter transition is stabilized in nucleosomes that have been reconstituted with the essential histone variant H2A.Z. Our studies firmly establish fluorescence resonance energy transfer as a valid method to study nucleosome stability, and shed new light on the biological function of H2A.Z.  相似文献   

8.
DNA methylation is an important epigenetic mark that is known to induce chromatin condensation and gene silencing. We used a time-domain fluorescence lifetime measurement to quantify the effects of DNA hypermethylation on the conformation and dynamics of a nucleosome. Nucleosomes reconstituted on an unmethylated and a methylated DNA both exhibit dynamic conformations under physiological conditions. The DNA end breathing motion and the H2A-H2B dimer destabilization dominate the dynamic behavior of nucleosomes at low to medium ionic strength. Extensive DNA CpG methylation, surprisingly, does not help to restrain the DNA breathing motion, but facilitates the formation of a more open nucleosome conformation. The presence of the divalent cation, Mg2+, essential for chromatin compaction, and the methyl donor molecule SAM, required for DNA methyltransferase reaction, facilitate the compaction of both types of nucleosomes. The difference between the unmethylated and the methylated nucleosome persists within a broad range of salt concentrations, but vanishes under high magnesium concentrations. Reduced DNA backbone rigidity due to the presence of methyl groups is believed to contribute to the observed structural and dynamic differences. The observation of this study suggests that DNA methylation alone does not compact chromatin at the nucleosomal level and provides molecular details to understand the regulatory role of DNA methylation in gene expression.  相似文献   

9.
Retroviral integration protein (IN) has been shown to be both necessary and sufficient for the integration of reverse-transcribed retroviral DNA into the host cell DNA. It has been demonstrated that self-assembly of IN is essential for proper function. Analytical ultracentrifugation was used to determine the stoichiometry and free energy of self-association of a full-length IN in various solvents at 23.3 degrees C. Below 8% glycerol, an association stoichiometry of monomer-dimer-tetramer is observed. At salt concentrations above 500 mM, dimer is the dominant species over a wide range of protein concentrations. However, as physiological salt concentrations are approached, tetramer formation is favored. The addition of glycerol to 500 mM NaCl, 20 mM Tris (pH 8.4), 2 mM beta-mercaptoethanol significantly enhances dimer formation with little effect on tetramer formation. Furthermore, as electrostatic shielding is increased by increasing the ionic strength or decreasing the cation size, dimer formation is strengthened while tetramer formation is weakened. Taken together, the data support a model in which dimer formation includes favorable buried surface interactions which are opposed by charge-charge repulsion, while favorable electrostatic interactions contribute significantly to tetramer formation.  相似文献   

10.
11.
12.
The accessibility to trypsin of "core" histones within the dimer (H2A-H2B), tetramer (H3-H4)2, octamer (H2A-H2B-H3-H4)2 and in chromatin was studied. It was shown that the hydrolysis of histones H2A and H2B within the dimer and octamer occurs in essentially the same way. The tetramer (H2-H4)2 becomes more compact with an increase in the ionic strength. Some of the tetramer (H3-H4)2 sites within the octamer are protected against trypsin. It was demonstrated that in terms of the histone accessibility to trypsin chromatin can exist in three states, i.e., tightly packed (in the presence of histone H1 and bivalent cations), intermediate (in the absence of histone H1 or bivalent cations) and folded (in the absence of histone H1 and bivalent cations). The folding of histones in neither of these chromatin states coincides with that within the octamer in 2M NaCl.  相似文献   

13.
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.  相似文献   

14.
15.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

16.
The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA.  相似文献   

17.
S F Scarlata  T Ropp  C A Royer 《Biochemistry》1989,28(16):6637-6641
High-pressure fluorescence polarization was used to investigate subunit interactions of the histone H2A-H2B dimer and the H3/H4 tetramer isolated from calf thymus (CT) and chicken erythrocyte (CE) chromatin. The proteins were individually labeled with the fluorescent probe 5-(dimethylamino)-naphthalene-1-sulfonate (dansyl or DNS), and the fluorescence polarization was measured as a function of pressure. The long fluorescence lifetime of the probe allows for the observation of global rotations of the protein, the rate of which is dependent upon the aggregation state. From the pressure dependence of the dansyl polarization, the Kd of H2A-H2B dissociation of the CE dimer was found to be approximately 1 X 10(-7) M at 2.0 M NaCl. Lowering the salt concentration to 200 mM slightly stabilized the protein to 6 X 10(-8) M. Our data indicate a small negative volume change for the dissociation of the core particle octamer. The (H3)2(H4)2 tetramer, as was shown in the previous paper (Royer et al., 1989), also formed predominantly dimers of tetramers at higher protein or salt concentrations. In the study presented here, we found the dissociation constant for the H3/H4 octamer to dimer transition to be 1 X 10(-21) M3 (C1/2 = 4 X 10(-8) M) at 2 M NaCl for the CT preparation. Decreasing the salt concentration to 200 mM reduced the stability of the CT H3/H4 octamer to 9 X 10(-21) M3 (C1/2 = 8 X 10(-8) M). The dimer of the CE tetramer also dissociated upon application of pressure in 2 M salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号