首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divergent microsatellite evolution in the human and chimpanzee lineages   总被引:1,自引:0,他引:1  
Gáspári Z  Ortutay C  Tóth G 《FEBS letters》2007,581(13):2523-2526
Comparison of the complete human genome sequence to one of its closest relatives, the chimpanzee genome, provides a unique opportunity for exploring recent evolutionary events affecting the microsatellites in these species. A simple assumption on microsatellite distribution is that the total length of perfect repeats is constant compared to that of imperfect ones regardless of the repeat sequence. In this paper, we show that this is valid for most of the chimpanzee genome but not for a number of human chromosomes. Our results suggest accelerated evolution of microsatellites in the human genome relative to the chimpanzee lineage.  相似文献   

2.
3.
4.
Genes that have experienced accelerated evolutionary rates on the human lineage during recent evolution are candidates for involvement in human-specific adaptations. To determine the forces that cause increased evolutionary rates in certain genes, we analyzed alignments of 10,238 human genes to their orthologues in chimpanzee and macaque. Using a likelihood ratio test, we identified protein-coding sequences with an accelerated rate of base substitutions along the human lineage. Exons evolving at a fast rate in humans have a significant tendency to contain clusters of AT-to-GC (weak-to-strong) biased substitutions. This pattern is also observed in noncoding sequence flanking rapidly evolving exons. Accelerated exons occur in regions with elevated male recombination rates and exhibit an excess of nonsynonymous substitutions relative to the genomic average. We next analyzed genes with significantly elevated ratios of nonsynonymous to synonymous rates of base substitution (dN/dS) along the human lineage, and those with an excess of amino acid replacement substitutions relative to human polymorphism. These genes also show evidence of clusters of weak-to-strong biased substitutions. These findings indicate that a recombination-associated process, such as biased gene conversion (BGC), is driving fixation of GC alleles in the human genome. This process can lead to accelerated evolution in coding sequences and excess amino acid replacement substitutions, thereby generating significant results for tests of positive selection.  相似文献   

5.
The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%–5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.  相似文献   

6.
Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Post‐copulatory sexual selection has been proposed to drive the rapid evolution of reproductive proteins, and, more recently, to increase genome‐wide mutation rates. Comparisons of rates of molecular evolution between lineages with different levels of female multiple mating represent a promising, but under‐utilized, approach for testing the effects of sperm competition on sequence evolution. Here, I use comparisons between primate species with divergent mating systems to examine the effects of sperm competition on reproductive protein evolution, as well as on sex‐averaged mutation rates. Rates of nonsynonymous substitution are higher for testis‐specific genes along the chimpanzee lineage in comparison to the human lineage, consistent with expectations. However, the data reported here do not allow firm conclusions concerning the effects of mating system on genome‐wide mutation rates, with different results obtained from different species pairs. Ultimately, comparative studies encompassing a range of mating systems and other life history traits will be required to make broad generalizations concerning the genomic effects of sperm competition.  相似文献   

8.
9.
Science is fairly certain that the gorilla lineage separated from the remainder of the hominoid clade about eight million years ago, 2 , 4 and that the chimpanzee lineage and hominin clade did so about a million years after that. 1 , 2 However, just this year, 2007, it was discovered that although the human head louse separated from the congeneric chimpanzee body louse (Pediculus) around the same time as the chimpanzee and hominin lineages split, 3 the human pubic louse apparently split from its sister species, the congeneric gorilla louse, Pthirus, 4.5 million years after their host lineages split. 3 No tested explanations exist for the discrepancy. Much is known about hominin evolution, but much remains to be discovered. The same is true of primate socioecology in general and gorilla socioecology in particular.  相似文献   

10.
Monoamine oxidase A (MAOA) is the X-linked gene responsible for deamination and subsequent degradation of several neurotransmitters and other amines. Among other activities, the gene has been shown to play a role in locomotion, circadian rhythm, and pain sensitivity and to have a critical influence on behavior and cognition. Previous studies have reported a non-neutral evolution of the gene attributable to positive selection in the human lineage. To determine whether this selection was human-exclusive or shared with other species, we performed a population genetic analysis of the pattern of nucleotide variation in non-human species, including bonobo, chimpanzee, gorilla, and orangutan. Footprints of positive selection were absent in all analyzed species, suggesting that positive selection has been recent and unique to humans. To determine which human-unique genetic changes could have been responsible for this differential evolution, the coding region of the gene was compared between human, chimpanzee, and gorilla. Only one human exclusive non-conservative change is present in the gene: Glu151Lys. This human substitution affects protein dimerization according to a three-dimensional structural model that predicts a non-negligible functional shift. This is the only candidate position at present to have been selected to fixation in humans during an episode of positive selection. Divergence analysis among species has shown that, even under positive selection in the human lineage, the MAOA gene did not experience accelerated evolution in any of the analyzed lineages, and that tools such as Ka/Ks would not have detected the selective history of the gene.  相似文献   

11.
Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.  相似文献   

12.
Yu XJ  Zheng HK  Wang J  Wang W  Su B 《Genomics》2006,88(6):745-751
Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47 candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more prominent in chimpanzee than in human. We also demonstrated that rhesus macaque performed much better than mouse as an outgroup in identifying lineage-specific selection in humans.  相似文献   

13.
Recent studies have suggested that gene gain and loss may contribute significantly to the divergence between humans and chimpanzees. Initial comparisons of the human and chimpanzee Y-chromosomes indicate that chimpanzees have a disproportionate loss of Y-chromosome genes, which may have implications for the adaptive evolution of sex-specific as well as reproductive traits, especially because one of the genes lost in chimpanzees is critically involved in spermatogenesis in humans. Here we have characterized Y-chromosome sequences in gorilla, bonobo, and several chimpanzee subspecies for 7 chimpanzee gene-disruptive mutations. Our analyses show that 6 of these gene-disruptive mutations predate chimpanzee-bonobo divergence at approximately 1.8 MYA, which indicates significant Y-chromosome change in the chimpanzee lineage relatively early in the evolutionary divergence of humans and chimpanzees.  相似文献   

14.
Much attention has been devoted to identifying genomic patterns underlying the evolution of the human brain and its emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees, our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA, spanning as much as a hundred kilobases, that are present in human genome but are absent from the chimpanzee genome and other nonhuman primates. Using our novel computational method Global Repeat Map, we examine tandem repeat structure in human and chimpanzee chromosome 1. In human chromosome 1, we find three higher order repeats (HORs), two of them novel, not reported previously, whereas in chimpanzee chromosome 1, we find only one HOR, a 2mer alphoid HOR instead of human alphoid 11mer HOR. In human chromosome 1, we identify an HOR based on 39-bp primary repeat unit, with secondary, tertiary, and quartic repeat units, fully embedded in human hornerin gene, related to regenerating and psoriatric skin. Such an HOR is not found in chimpanzee chromosome 1. We find a remarkable human 3mer HOR organization based on the ~1.6-kb primary repeat unit, fully embedded within the neuroblastoma breakpoint family genes, which is related to the function of the human brain. Such HORs are not present in chimpanzees. In general, we find that human-chimpanzee differences are much larger for tandem repeats, in particularly for HORs, than for gene sequences. This may be of great significance in light of recent studies that are beginning to reveal the large-scale regulatory architecture of the human genome, in particular the role of noncoding sequences. We hypothesize about the possible importance of human accelerated HOR patterns as components in the gene expression multilayered regulatory network.  相似文献   

15.
The PV subfamily of Alu repeats in human DNA is largely composed of recently inserted members. Here we document additional members of the PV subfamily that are found in chimpanzee but not in the orthologous loci of human and gorilla, confirming the relatively recent and independent expansion of this Alu subfamily in the chimpanzee lineage. As further evidence for the youth of this Alu subfamily, one PV Alu repeat is specific to Pan troglodytes, whereas others are present in Pan paniscus as well. The A-rich tails of these Alu repeats have different lengths in Pan paniscus and Pan troglodytes. The dimorphisms caused by the presence and absence of PV Alu repeats and the length polymorphisms attributed to their A-rich tails should provide valuable genetic markers for molecular-based studies of chimpanzee relationships. The existence of lineage-specific Alu repeats is a major sequence difference between human and chimpanzee DNAs. Correspondence to: C.W. Schmid  相似文献   

16.
17.
Humans and chimpanzees share some 99% of DNA and amino acid identity, yet they exhibit important biomedical, morphological, and cognitive differences, difficult to accommodate within the remaining 1% of sequence diversity. Other types of genetic variation must be responsible for the taxonomic differences. Here we trace the evolution of AluYb8 repeats from a single origin at the roots of higher primates to a large increase in their number in humans. We identify nine AluYb8 DNA repeats in the chimpanzee genome compared to over 2200 repeats in the human, which represents a 250-fold increase in the rate of change in the human lineage and far outweighs the 99% sequence similarity between the two species. It is estimated that the average age of the human Yb8Alus is about 3.3 million years (My); almost 10% of them are identical in sequence, and hence are of recent origin. Genomic variations of this magnitude, distinguishing humans from great apes have not been realized. This explosive Alu expansion must have had a profound effect on the organization of our genome and the architecture of our chromosomes, inferentially altering profiles of gene expression and chromosome choreography in cell division. Additionally, we conclude that this major evolutionary process of Alu proliferation is driven by internal forces, written in the chemistry of DNA, rather than by external selection.  相似文献   

18.
Hahn Y  Lee B 《Human genetics》2006,119(1-2):169-178
The comparative study of the human and chimpanzee genomes may shed light on the genetic ingredients for the evolution of the unique traits of humans. Here, we present a simple procedure to identify human-specific nonsense mutations that might have arisen since the human–chimpanzee divergence. The procedure involves collecting orthologous sequences in which a stop codon of the human sequence is aligned to a non-stop codon in the chimpanzee sequence and verifying that the latter is ancestral by finding homologs in other species without a stop codon. Using this procedure, we identify nine genes (CML2, FLJ14640, MT1L, NPPA, PDE3B, SERPINA13, TAP2, UIP1, and ZNF277) that would produce human-specific truncated proteins resulting in a loss or modification of the function. The premature terminations of CML2, MT1L, and SERPINA13 genes appear to abolish the original function of the encoded protein because the mutation removes a major part of the known active site in each case. The other six mutated genes are either known or presumed to produce functionally modified proteins. The mutations of five genes (CML2, FLJ14640, MT1L, NPPA, TAP2) are known or predicted to be polymorphic in humans. In these cases, the stop codon alleles are more prevalent than the ancestral allele, suggesting that the mutant alleles are approaching fixation since their emergence during the human evolution. The findings support the notion that functional modification or inactivation of genes by nonsense mutation is a part of the process of adaptive evolution and acquisition of species-specific features. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
20.
Slow molecular clocks in Old World monkeys,apes, and humans   总被引:17,自引:0,他引:17  
Two longstanding issues on the molecular clock hypothesis are studied in this article. First, is there a global molecular clock in mammals? Although many authors have observed unequal rates of nucleotide substitution among mammalian lineages, some authors have proposed a global clock for all eutherians, i.e., a single global rate of 2.2 x 10(-9) substitutions per nucleotide site per year. We reexamine this issue using noncoding, nonrepetitive DNA from Old World monkeys (OWMs), chimpanzee, and human. First, using the minimal date of 6 MYA for the human-chimpanzee divergence and more than 2.5 million base pairs of genomic sequences from human and chimpanzee, we estimate a maximal rate of 0.99 x 10(-9) for noncoding, nonrepetitive genomic regions for these two species. This estimate is less than half of the proposed global rate and much smaller than the commonly used rate (3.5 x 10(-9)) for eutherians. Further, using a minimal date of 23 MYA for the human-OWM divergence, we estimate a maximal rate of 1.5 x 10(-9) for both introns and fourfold degenerate sites in humans and OWMs. In addition, with the New World monkey (NWM) lineage as an outgroup, we estimate that the rate of substitution in introns is 30% higher in the OWM lineage than in the human lineage. Clearly, there is no global molecular clock in eutherians. Second, although many studies have indicated considerable variation in the mutation rate among regions of the mammalian genome, a recent study proposed a uniform rate. Using new and existing intron sequence data from higher primates, we find significant rate variation among genomic regions and a positive correlation between the rate of substitution and the GC content, refuting the claim of a uniform rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号