首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid receptors in wild type and mutant S49 mouse lymphoma cells were affinity labeled with [3H]dexamethasone 21-mesylate and analyzed directly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of receptors in cytosol from wild type cells and nuclear transfer decreased (nt-) mutants was 97,000 (97 kDa). The molecular weight of receptors in cytosol from nuclear transfer increased (nti) mutants was 48 kDa. The 97 kDa receptor in cytosol from wild type cells was digested by chymotrypsin to a 40 kDa steroid-binding receptor fragment but the 48 kDa receptor in cytosol from nti mutants was resistant to digestion by chymotrypsin. In addition to the 48 kDa receptor, cytosol from nti mutants contained 40 and 18 kDa receptor fragments. Cytosol from the nt- mutants also contained 18 kDa receptor fragments. The 40 and 18 kDa receptor fragments were present in multiple subclones of a nti mutant cell line. Formation of these receptor fragments was not prevented by protease inhibitors and was not increased by extended incubation of cytosol samples. Both 48 and 40 kDa forms of the receptor, but not the 18 kDa form, could be activated and bound by DNA-cellulose.  相似文献   

2.
Abstract

Bacillus thuringiensis is a Gram positive bacterium that produces an insecticidal crystalline protein making it one of the most important biocontrol agents for pest management. Bioinsecticides based on B. thuringiensis were produced by fermentation processes in liquid media. Cultural conditions controlling proteolytic activities in different culture media were investigated to study the possible correlations between B. thuringiensis production of proteases and delta-endotoxins in a low-cost complex medium. Aeration appeared to play an important role in delta-endotoxin production. The correlation between proteolytic activity and aeration does not seem to be reliable. A negative correlation (correlation coefficient =? 0.774) was established between protease activity and delta-endotoxin production. In order to prove this correlation, protease hypo-producing and overproducing mutants were isolated through random mutagenesis of two wild strains, BUPM13 and BUPM5, by using nitrous acid. Interestingly, delta-endotoxin production of BUPM13-1, BUPM13-2 and BUPM13-3 was markedly improved when compared to the wild strain BUPM 13, reaching 2.1-fold, 3.69-fold and 8.13-fold, respectively. Maximal protease activity (540-2468 UI) obtained by BUPM5-1 and BUPM5-2 was 2.34-fold and 10.7-fold, respectively, more than that obtained by the wild strain BUPM5 with a drastic decrease of their delta-endotoxin production. Study of delta-endotoxin production by the selected mutants confirmed that insecticidal crystal protein stability in the culture strongly depends on the level of endogenous protease activity. This was also confirmed by bioassays measuring the LC50 using larvae of Ephestia kuehniella. Determining protease activity in fermentation culture could be useful in indirectly predicting the potency of B. thuringiensis strains with high insecticidal activities. This would allow low-cost selection of overproducing wild isolates or mutants in the screening programmes for the reduction of production cost, which is important from a practical point of view.  相似文献   

3.
Asporogenic and oligosporogenic Bacillus thuringiensis mutants having the ability to overproduce insecticidal crystal protein were generated by using nitrous acid (50 mg/ml), as chemical mutagenic agent. Insecticidal crystal proteins produced by asporogenic mutants remained encapsulated within the cells. Delta-endotoxin production by most of mutants was improved compared to the corresponding wild strains BNS3 and a mutant M26. The overproduction by asporogenic and oligosporogenic mutants was attributed to defect in genes involved in sporulation and to random mutations affecting cell metabolism at different pathways and delta-endotoxin synthesis. Sporeless bioinsecticides could be developed based on stable and environmentally safe Bacillus thuringiensis mutants.  相似文献   

4.
Mutants defective in delta-endotoxin crystal production from four closely related isolates of Bacillus thuringiensis var. aizawi with aizawi serotype crystals were as vigorous as the parents in terms of growth, extracellular protease production, sporulation and heat resistance of spores. Spores produced by mutants germinated faster than wild type spores possibly due to deficiency of protein, in the form of delta-endotoxin in the spore coat. Acrystalliferous (cry—) mutants were not active in Galleria mellonella or Pieris brassicae larvae. Mutants with small crystals (sm cry) lost activity or gained extra activity against either one or the other host, revealing the presence of different toxicity factors. Solubilized crystals of parent isolates were composed of two major polypeptides with Mr values of 130 000 and 138 000. Sm cry mutants lost either polypeptide irrespective of which insect potency had been lost. Some cry — and some sm cry mutants had the same plasmid pattern as the parent; others lost one plasmid sometimes gaining another of different size. No consistent correlation was found between plasmid loss in mutants and any loss or increase of potency indicated by bioassays. It is concluded that the delta-endotoxins of the isolates under investigation are composed of at least two toxins. The results suggest that genes coding for the production of toxic factors or for their expression may be carried on both the plasmids and the chromosome.  相似文献   

5.
Considering the electrostatic potential of active site, four mutants of thermolysin (EC 3.4.24.4) are designed in an attempt to change the optimum pH of the hydrolytic activity toward acidic regions. On the basis of the numerical calculation of the electrostatic potential in the thermolysin molecule, Asp213 is targeted to be replaced by a basic residue, His, Lys, Arg or a neutral one, Asn. The mutant enzymes are produced inBacillus subtilis as a host using the method of site-directed mutagenesis and their optimum pH values for hydrolyzing a synthetic substrate furylacryloyl-Gly-l-Leu-NH2 are found to be lowered by 0.2–0.4 pH units with reference to the wild type enzyme. The pl shifts of the mutants are evaluated. Neither optimum pH nor pl shift can be explained by the contribution of the pK change only at the mutation site. We find a clear negative correlation between the activities at pH 7.0 and the pI values among the four mutants and wild-type enzyme. It suggests that the contribution of pK shift of other residues must be taken into account in order to explain the activity change. Little change of thermal stability is observed among the mutants and wild type enzymes.  相似文献   

6.
Pro78 is a solvent-exposed residue at the N-terminal end of alpha-helix 5 in the DNA binding domain of lambda repressor. Random mutagenesis experiments have suggested that Pro78 is essential [Reidhaar-Olson, J.F., & Sauer, R.T. (1990) Proteins: Struct., Funct., Genet. (in press)]. To investigate the requirement for proline at this position, we constructed and studied the properties of a set of ten position 78 mutant proteins. All of these mutants have decreased intracellular activities and are expressed at significantly lower levels than wild type. Pulse-chase experiments show that the mutant proteins are rapidly degraded in the cell; the mutants examined had half-lives of 11-35 min, whereas the wild-type protein has a half-life of greater than 10 h. The rapid degradation of position 78 mutants is not suppressed by mutations that affect known Escherichia coli proteases. The Pro78----Ala mutant could be overexpressed in a dnaJ- strain and was purified. This mutant has full DNA binding activity in vitro, suggesting that its folded structure and ability to form active dimers are similar to those of wild type. The PA78 mutant (Tm = 48 degrees C) is less thermally stable than wild type (Tm = 55 degrees C). Double-mutant studies show that this instability contributes to but is not the main cause of its rapid intracellular degradation and also suggest that proteolysis proceeds from the denatured forms of proteins containing the PA78 substitution. The PA78 mutation does not appear to introduce a new cleavage site for cellular proteases, nor does the mutation enhance susceptibility to proteases such as thermolysin and trypsin in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The C terminus of the rat brain Na(+)-Ca(2+) exchanger (RBE-1; NCX1. 4) (amino acids 875-903) is modeled to contain the last transmembrane alpha helix (amino acids 875-894) and an intracellular extramembraneous tail of 9 amino acids (895-903). Truncation of the last 9 C-terminal amino acids, Glu-895 to stop, did not significantly impair functional expression in HeLa or HEK 293 cells. Truncation, however, of 10 amino acids (Leu-894 to stop; mutant C10) reduced Na(+) gradient-dependent Ca(2+) uptake to 35-39% relative to the wild type parent exchanger, and further truncation of 13 or more amino acids resulted in expression of trace amounts of transport activity. Western analysis indicated that Na(+)-Ca(2+) exchanger protein was produced whether transfection was carried out with functional or non-functional mutants. Immunofluorescence studies of HEK 293 cells expressing N-Flag epitope-tagged wild type and mutant Na(+)-Ca(2+) exchangers revealed that transport activity in whole cells correlated with surface expression. All cells expressing the wild type exchanger or C9 exhibited surface expression of the protein. Only 39% of the cells expressing C10 exhibited surface expression, and none was detected in cells transfected with non-functional mutants C13 and C29. Since functional and non-functional mutants were glycosylated, the C terminus is not mandatory to translocation into the endoplasmic reticulum (ER). Endoglycosidase H digestion of [(35)S]methionine-labeled protein derived from wild type Na(+)-Ca(2+) exchanger and from C10 indicated that resistance to the digestion was acquired after 1 and 5 h of chase, respectively. C29 did not acquire detectable resistance to endoglycosidase H digestion even after 10 h of chase. Taken together, these results suggest that the "cellular quality control machinery" can tolerate the structural change introduced by truncation of the C terminus up to Ser-893 albeit with reduced rate of ER-->Golgi transfer and reduced surface expression of the truncated protein. Further truncation of C-terminal amino acids leads to retention of the truncated protein in the ER, no transfer to the Golgi, and no surface expression.  相似文献   

8.
Mutant forms of aromatase cytochrome P-450 bearing modifications of amino acid residues Pro308 and Asp309 and expressed in transfected Chinese hamster ovary cells were subjected to kinetic analysis and inhibition studies. The Km for androstenedione for expressed wild type (11.0 +/- 0.3 nM SEM, n = 3) increased 4-, 25- and 31-fold for mutants Pro308Phe, Asp309Asn and Asp309Ala, respectively. There were significant differences in sensitivity among wild type and mutants to highly selective inhibitors of estrogen biosynthesis. 4-Hydroxyandrostenedione (4-OHA) a strong inhibitor of wild type aromatase activity (IC50 = 21 nM and Ki = 10 nM), was even more effective against mutant Pro308Phe (IC50 = 13 nM and Ki = 2.8 nM), but inhibition of mutants Asp309Asn and Asp309Ala was considerably less (IC50 = 345 and 330 nM and Ki = 55 and 79 nM, respectively). Expressed wild type aromatase and Pro308Phe aromatase were strongly inhibited by CGS 16949A (IC50 = 4.0 and 4.6 nM, respectively) whereas mutants Asp309Asn and Asp309Ala were markedly less sensitive (IC50 = 140 and 150 nM, respectively). CGS 18320B produced similar inhibition. Kinetic analyses produced Ki = 0.4 nM for CGS 16949A inhibition of wild type versus 1.1, 37 and 58 nM, respectively, against Pro308Phe, Asp309Asn and Asp309Ala. The results demonstrate significant changes in function resulting from single amino acid modifications of the aromatase enzyme. Our data indicate that mutation in Asp309 creates a major distortion in the substrate binding site, rendering the enzyme much less efficient for androstenedione aromatization. The substitution of Pro308 with Phe produces weaker affinity for androstenedione in the substrate pocket, but this alteration favors 4-OHA binding. Similarly, mutant Pro308Phe exhibits a slightly greater sensitivity to inhibition by CGS 18320B than does the wild type. These results indicate that residues Pro308 and Asp309 play critical roles in determining substrate specificity and catalytic capability in aromatase.  相似文献   

9.
Revertants were selected from aryl hydrocarbon hydroxylase (AHH)-deficient recessive mutants belonging to three complementation groups and from a dominant mutant of the Hepa-1 cell line. The recessive mutants had low spontaneous reversion frequencies (less than 4 X 10(-7] that were increased by mutagenesis. The majority of these revertants also had reacquired only partial AHH activity. Revertants of group A mutants were identical to the wild type with respect to both in vivo and in vitro enzyme stability and the Km for the substrate, benzo [alpha]pyrene, and therefore failed to provide evidence that gene A is the AHH structural gene. Group B and group C mutants are defective in the functioning of the Ah receptor required for AHH induction. Revertants of these groups were normal with respect to in vivo temperature sensitivity for AHH induction and for the 50% effective dose for the inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and thus provided no evidence that the B and C genes code for components of the receptor. Two rare group C revertants possessed AHH activity in the absence of induction. The phenotype of one of these was shown to be recessive to the wild type. Spontaneous revertants of the dominant mutant occurred at a frequency 300-fold greater than those of the recessive mutants, and this frequency was not increased by mutagenesis. These revertants all displayed complete restoration of AHH activity to wild type levels. These observations and the results from cell hybridization studies suggest that the dominant revertants arose by a high frequency event leading to functional elimination of the dominant mutation.  相似文献   

10.
Improvement of the activity and insecticidal spectrum of cloned Cry toxins of Bacillus thuringiensis should allow for their wider application as biopesticides and a gene source for gene-modified crops. The insecticidal activity of Cry toxins depends on their binding to the receptor. Therefore, as a model, we aimed to generate improved binding affinity mutant toxins against Bombyx mori cadherin-like receptor (BtR175) using methods of directed evolution with the expectation of insecticidal activity improved mutants. Four serial amino acid residues of 439QAAG442 or 443AVYT446 of Cry1Aa were replaced with random amino acids and were displayed on the T7 phage for library construction. Through five cycles of panning of the phage libraries using BtR175, 11 mutant phage clones were concentrated, and mutant toxin sequences were confirmed. The binding affinities of the three mutants were 42-, 15-, and 13-fold higher than that of the wild type, indicating that mutants with improved binding affinity to cadherin can be easily selected from randomly replaced loop 3 mutant libraries using directed evolution. We discuss the development of a genetic engineering method based on directed evolution to improve the binding affinity of Cry toxin to receptors.  相似文献   

11.
Invertase production under solid state fermentation (SSF) was determined using two overproducing mutants (Aw96-3 and Aw96-4) isolated previously from the wild type strain Aspergillus niger C28B25, as well as one diploid (DAR1) and two autodiploid strains (AD96-3 and AD96-4) constructed by parasexual crossings among these mutants. Using polyurethane foam (PUF) as an inert carrier, two initial water activity (Aw) values were evaluated (0.99 and 0.96). At Aw=0.99, maximal activity was reached by diploid AD96-4 (48.91 IU/ml) representing 30- and 13-fold increases with respect to maximal values achieved by the wild type and the haploid parental mutant (Aw96-4), respectively. Similar levels were achieved by this strain at Aw=0.96. However, diploid DAR1 only produced high levels of invertase at Aw=0.96 (43.90 IU/ml), whereas strain AD96-3 reached its highest production (31.10 IU/ml) at Aw=0.99. Both productivity and yields were also analysed for every strain at each Aw value.  相似文献   

12.
By site-directed mutagenesis, we made several cytochrome P-450d (P-450d) mutants as follows: Asn310Phe (D13), Ile312Leu (D14), Glu318Asp (D15), Val320Ile (D16), Phe325Thr (D19), Asn310Phe,Ile312Leu (M6), Glu318Asp,Val320Ile (M7), Phe325Thr, Glu318Asp (M3). This region (Asn-310-Phe-325) is supposed to be located in the distal helix above the heme plane in P-450d, being conjectured from the structure of P-450cam. We studied Soret spectral changes of those mutants by adding several axial ligands such as aniline, pyridine, metyrapone, 2-phenylimidazole and 4-phenylimidazole. Binding constants (Kb) of aniline and pyridine to the single and double mutants were higher than those to the wild type by 2-10-times. The double mutations did not additively increase the Kb values compared with those to the single mutants. In contrast, Kb value (1.0.10(5) M-1) of metyrapone to the double mutant M3 was much higher than that (2.0.10(3) M-1) of the wild type and those of the single mutants, D15 (4.5.10(4) M-1) and D19 (1.6.10(4) M-1). The increased affinity of metyrapone to the mutant M3 may be attributed to an interaction of the hydrophobic group of metyrapone with nearby hydrophobic group(s) produced cooperatively by the double mutation of P-450d. Kb values of 2-phenylimidazole and 4-phenylimidazole to the mutant M3 were also the highest among those of the mutants and the wild type. Therefore, it was suggested that this region (from Asn-310 to Phe-325) must be located at the distal region of the heme moiety and form, at least, a substrate-binding region of membrane-bound P-450d.  相似文献   

13.
Deletion of amino acid residues 370 to 375 (D2) and single alanine substitutions between residues 371 and 375 (FNIGI) of lepidopteran-active Bacillus thuringiensis CryIAb delta-endotoxin were constructed by site-directed mutagenesis techniques. All mutants, except that with the I-to-A change at position 373 (I373A), produced delta-endotoxin as CryIAb and were stable upon activation either by Manduca sexta gut enzymes or by trypsin. Mutants D2, F371A, and G374A lost most of the toxicity (400 times less) for M. sexta larvae, whereas N372A and I375A were only 2 times less toxic than CryIAb. The results of homologous and heterologous competition binding assays to M. sexta midgut brush border membrane vesicles (BBMV) revealed that the binding curves for all mutant toxins were similar to those for the wild-type toxin. However, a significant difference in irreversible binding was observed between the toxic (CryIAb, N372A, and I375A) and less-toxic (D2, F371A, and G374A) proteins. Only 20 to 25% of bound, radiolabeled CryIAb, N372A, and I375A toxins was dissociated from BBMV, whereas about 50 to 55% of the less-toxic mutants, D2, F371A, and G374A, was dissociated from their binding sites by the addition of excess nonlabeled ligand. Voltage clamping experiments provided further evidence that the insecticidal property (inhibition of short-circuit current across the M. sexta midgut) was directly correlated to irreversible interaction of the toxin with the BBMV. We have also shown that CryIAb and mutant toxins recognize 210- and 120-kDa peptides in ligand blotting. Our results imply that mutations in residues 370 to 375 of domain II of CrylAb do not affect overall binding but do affect the irreversible association of the toxin to the midgut columnar epithelial cells of M. sexta.  相似文献   

14.
Several deletion mutants of R6K have been isolated by mutagen treatment of bacterial host carrying wild type of the plasmid and search for clones that lost ampicillin or streptomycin resistance. The molecular weight of the mutants as estimated by agarose gel electrophoresis was 15 times 10(6) minus 23 times 10(6) compared to 26 times 10(6) for the parental plasmid. The mutants were characterized in respect of the level of resistance to ampicillin and frequency of conjugational transfer. Some of the mutants were found to differ in Eco RI digestion pattern from the wild type.  相似文献   

15.
16.
17.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same size in each mutant. These NaCl-sensitive mutants had an extremely long lag phase (60 to 70 h) in defined medium containing 2.5 M NaCl. The osmoprotectants glycine betaine and choline (which is oxidized to glycine betaine) dramatically shortened the lag phase, whereas L-proline and proline betaine, which are effective osmoprotectants for the wild type, were ineffective. Electron microscopic observations of the NaCl-sensitive mutant under NaCl stress conditions revealed large, pseudomulticellular cells similar to those observed previously in the wild type under the same conditions. Glycine betaine, but not L-proline, corrected the morphological abnormalities. Studies of the uptake of L-[14C]proline and [14C]glycine betaine upon osmotic upshock revealed that the mutant was not defective in the uptake of either osmoprotectant. Comparison of pool K+, amino acid, and glycine betaine levels under NaCl stress conditions in the mutant and the wild type revealed no striking differences. Glycine betaine appears to have additional beneficial effects on NaCl-stressed cells beyond those of other osmoprotectants. The NaCl stress protein responses of the wild type and the NaCl-sensitive mutant were characterized and compared by labeling with L-[35 S]methionine and two-dimensional gel electrophoresis. The synthesis of 10 proteins increased in the wild type in response to NaCl stress, whereas the synthesis of these 10 proteins plus 2 others increased in response to NaCl stress in the NaCl-sensitive mutant. Five proteins, three of which were NaCl stress proteins, were produced in elevated amounts in the NaCl-sensitive mutant under unstressed conditions compared to the wild type. The presence of glycine betaine during NaCl stress decreased the production of three NaCl stress proteins in the mutant versus one in the wild type.  相似文献   

18.
Modified plasma-membrane ATPase in mutants of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
Mutations affecting the plasma membrane ATPase of Saccharomyces cerevisiae were obtained by selecting mutants resistant to Dio-9. In a plasma-membrane-enriched fraction of the mutant MG2130, the ATPase activity was resistant to vanadate (50% inhibition by 26 microM in the mutant compared to 1.3 microM in the parental strain). Several catalytic properties of the membrane-bound ATPase were modified by 60-120% in the mutant which had a higher Km for MgATP and was more heatstable, less sensitive to mercurials, and more stimulated by monovalent cations than the parental type. A single mutation is responsible for the phenotypes of four independent allelic mutants. Resistance to Dio-9 in vivo and resistance to vanadate in vitro segregated together in three tetrads issued from a cross between the wild type and mutant. The mutation is semi-dominant as shown by expression of the mutant phenotype in a heterozygous diploid resulting from the cross between the wild type and mutant. It is concluded that the pma locus, affected by these mutations, is the structural gene either for the 100000-Mr subunit of plasma membrane ATPase or for a protein which tightly controls the conformation of the plasma-membrane ATPase within the membrane.  相似文献   

19.
The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acids play important role in substrate binding at subsites at −3 through −5. Although mutation increases the transglycosylation activity of enzymes, in the presence of acceptors the difference between wild type and mutants is not so significant. Oligomer transfer reactions of AMY1 wild type and its mutants were studied using maltoheptaose and maltopentaose donors and different chromophore containing acceptors. The conditions for the chemoenzymatic synthesis of 4-methylumbelliferyl-α-d-maltooligosaccharides (MU-α-d-MOSs) were optimized using 4-methylumbelliferyl-β-d-glucoside as acceptor and maltoheptaose as donor. 4-Methylumbelliferyl-α-d-maltoside, -maltotrioside, -maltotetraoside and -maltopentaoside have been synthesized. Products were identified by MALDI-TOF MS. 1H and 13C NMR analyses showed that AMY1 V47F preserved the stereo- and regioselectivity. The produced MU-α-d-MOSs of degree of polymerization DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay.  相似文献   

20.

Background

Bacillus thuringiensis Cry toxins, that are used worldwide in insect control, kill insects by a mechanism that depends on their ability to form oligomeric pores that insert into the insect-midgut cells. These toxins are being used worldwide in transgenic plants or spray to control insect pests in agriculture. However, a major concern has been the possible effects of these insecticidal proteins on non-target organisms mainly in ecosystems adjacent to agricultural fields.

Methodology/Principal Findings

We isolated and characterized 11 non-toxic mutants of Cry1Ab toxin affected in different steps of the mechanism of action namely binding to receptors, oligomerization and pore-formation. These mutant toxins were analyzed for their capacity to block wild type toxin activity, presenting a dominant negative phenotype. The dominant negative phenotype was analyzed at two levels, in vivo by toxicity bioassays against susceptible Manduca sexta larvae and in vitro by pore formation activity in black lipid bilayers. We demonstrate that some mutations located in helix α-4 completely block the wild type toxin activity at sub-stoichiometric level confirming a dominant negative phenotype, thereby functioning as potent antitoxins.

Conclusions/Significance

This is the first reported case of a Cry toxin dominant inhibitor. These data demonstrate that oligomerization is a fundamental step in Cry toxin action and represent a potential mechanism to protect special ecosystems from the possible effect of Cry toxins on non-target organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号