首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Food habits of the American mink Mustela vison were studied based on the analysis of 2364 scat samples, collected at three lakes in Northeastern Poland. The mink preyed on a wide range of prey, but two types of prey, amphibians and fish, dominated in the diet of the mink during all the seasons. Frogs, and first and foremost, the common frog Rana temporaria, were hunted by the mink, mainly from the late autumn until the early spring, and comprised up to 83.9% of the prey biomass (the multiannual average for November–December at the Majcz Wielki Lake). The most frequently eaten fish were cyprinids and percids. Seasonality of fish consumption by mink was not as well pronounced as in the case of amphibians. At the first two lakes, fish were hunted mainly in the winter and in the early spring, whereas at the third lake in the summer. The highest multiannual average share of fish in the diet of the mink was recorded in March–April at Lake Tuchlin (69.2% of the prey biomass). Crayfish, which were recorded in the diet mainly in the late spring and in the summer, comprised up to 59.6% of the prey biomass for May–June at the Majcz Wielki Lake. Birds, mammals and insects were supplementary food for the mink. During the breeding season, mink predation on waterfowl and their broods was correlated with the abundance of crested grebe Podiceps cristatus and coot Fulica atra nests in the area. The diet of individual mink varied considerably and the share of birds in the diet of the mink was related to the distance from individual mink dens to the colonies of waterfowl. In May–June, adult birds, chicks and eggs comprised up to 73.6% of the prey biomass of a female mink that inhabited a den located 100 m from the colony's edge. At all three lakes, the diet of the mink was the most diverse in the late spring and in the summer. In May–August, the values of the mink food niche breadths were about twice those noted in winter months.  相似文献   

2.
The American mink (Neovison vison) is a semi-aquatic, generalist carnivore released onto Tierra del Fuego (TDF) Island in the 1940s, subsequently spreading to adjacent islands in the archipelago with potential effects on native prey populations. Knowledge of this new predator's trophic ecology is essential to identify threats, plan control strategies and conserve native fauna. We studied seasonal mink diet in TDF in different habitats. We identified undigested remains from 493 scats collected between May 2005 and March 2009 along marine coasts and freshwater shores (rivers and lakes). Small mammals and fish were the main mink prey in TDF (over 65% of diet items). Seasonal variations were not detected, but diet did vary significantly between marine and freshwater habitats, where more terrestrial items were consumed. Among mammals, mink consumed more small native rodents than exotic species. Native fish consumption was also important with greater representation of species from the families Nototheniidae and Galaxiidae in marine and freshwater habitats respectively. Birds were the third item in importance, but did not constitute a particularly large part of the mink's diet on TDF. Overall, differences found in mink diet between habitats reflected their generalist/opportunistic feeding behaviour and did not differ greatly from observations in its native range or in other areas where it has been introduced. Our results establish the interactions between this novel predator and its prey and also illustrate the need to continue research on native prey populations to quantify mink impact on them and understand the ecological context of this biotic assemblage.  相似文献   

3.
Understanding processes allowing the co-existence of ecologically similar species is important but difficult to study in community ecology. Introductions of alien species are unplanned experiments allowing investigation of co-adaptation of both native and invasive species over a short period. We analysed food niche differentiation between native European mink and alien American mink after invasion of the latter species in Belarus. European mink feed mainly on crayfish, frogs and fish whereas American mink prefer small mammals, fish and frogs. The diet of both species varied between seasons and during the period of alien mink invasion. Concurrent with the progress of American mink invasion, the European mink food niche has narrowed to feeding mainly on frogs, with the proportion of aquatic prey (fish and crayfish) in their diet drastically reduced. In contrast, the American mink food niche became wider during invasion. The breadth was stable but included a varied proportion of different prey categories: namely an increased proportion of aquatic prey and a decreased proportion of water vole and waterfowl. The increase in abundance of American mink saw a decrease in the proportion of larger prey in their diet. When American mink preyed more often on frogs, food niche overlap of both predators increased. This result suggests that arrival of an alien competitor reduced food abundance (exploitative competition) and caused a change in native mink diet.  相似文献   

4.
In order to collect ecological data of invasive American mink (Neovison vison) at a fishpond area in northeastern Germany, we conducted a telemetry study in which 14 mink were radio-tracked. During this project, 2,502 scats from radio-tracked individuals were collected in the period from October 2003 to October 2005. Investigated mink principally prey on fish, small mammals and birds (eggs inclusive), whereas amphibians, reptiles and invertebrates were caught infrequently. Analysing mink scats of different seasons, we found significant seasonal variations of diet composition. In spring, fish, mammals and birds were hunted in similar amounts. During summer, birds made up the main part of the diet followed by mammals. In autumn, the proportion of birds in the mink diet decreased, whereas fish gained in importance. This trend continued during the winter period, when mink preyed almost exclusively on fish. Amphibians, crustaceans, insects, molluscs and reptiles were found only occasionally in scat samples. Among birds, the mink preyed mainly on the Eurasian Coot (Fulica atra) followed by the Mallard (Anas platyrhynchos). Mammalian prey was clearly dominated by the water vole (Arvicola terrestris) and among fish, mink hunted especially perch (Perca fluviatilis), roach (Rutilus rutilus) and carp (Cyprinus carpio). Results clearly demonstrate that mink is an opportunistic predator, which hunts its prey according to availability and vulnerability, respectively. Despite the high portions of fish in their autumn and winter diet, the economic damage caused by mink seems to be negligible. However, high predation rates on birds during the breeding season indicate a potential negative impact of mink on waterfowl.  相似文献   

5.
Stomach and intestine contents of 211 American minkMustela vison Schreber, 1777 from two areas (Thy and Bornholm) in Denmark and stomach contents of 47 polecatsM. putorius Linnaeus, 1758 from Thy were analysed. Sympatric mink (from Thy) preyed mostly on mammals (55% occurrence), followed by amphibians (36%), birds (33%) and fish (30%), whereas polecat preyed mostly on amphibians (87%) and mammals (34%), and only occasionally on birds (9%) and fish (6%). Allopatric mink (from Bornholm) preyed mostly on birds (50%), followed by mammals (42%), fish (25%) and amphibians (4%). With the possible exception of some amphibians, no endangered species were found in their diet. No differences were found in food composition between wild and escaped farm mink. The concern that mink in general might have a detrimental effect on its prey species and other mustelids in terms of food competition in Denmark may be unjustified. It cannot be ruled out, however, that mink may locally have a seriously negative effect on some specific prey species, and clearly, more data is needed on eg prey abundance and spring and summer mink diet, to make stronger conclusions.  相似文献   

6.
Diets of the otter Lutra lutra and the American mink Mustela vison were studied by scat analysis on five woodland rivers and streams in eastern Poland. Fish constituted 51% of food biomass consumed by otters in spring‐summer and 40% in autumn‐winter, with common fish (perch Perca fluviatilis, pike Esox lucius, and roach Rutilus rutilus) being captured most frequently by the otters. Amphibians (mainly Rana temporaria, which also dominated in the living community) made up 34% of otters’ food biomass in spring‐summer and 58% in autumn‐winter. American mink relied on three prey groups: fish (40% in spring‐summer, and 10% in autumn‐winter), frogs (32% and 51%, respectively), and small mammals (21% and 36%). Out of available Micromammalia, mink strongly selected the root vole Microtus oeconomus. The cold season diet of both otter and mink depended on river size. On small rivers with forested valleys, otters and mink fed nearly exclusively on amphibians (72–90% of food biomass). With size of a river increasing and riverside habitat becoming more open (sedge and reed marshes instead of forests), otters shifted to catching predominantly fish (up to 76% in diet) and mink to preying on small mammals (up to 65% in diet).
Review of literature on otter and mink in Eurasia showed that their diets did not change with latitude (as indicators of climate severity and duration of water freezing) but they depended on habitats. In otter diet, the mean share of fish declined from 94% (SE 1.7) on sea shores, to 71% (SE 2.9) on lakes and fish ponds, to 64% (SE 2.8) on rivers and streams. The roles of amphibians and crustaceans increased in the same gradient (from 0 to 15%, and from 3 to 7%, respectively). On inland waters, the abundance of crayfish was the essential factor differentiating otters’ diet composition. In Eurasia, the staple food types of American mink on rivers and streams were fish (on average, 27% in diet, SE 3.9), mammals (30%, SE 5.0), and amphibians (17%, SE 4.8), whereas on lakes and ponds mink fed predominantly on birds (on average, 33% in diet, SE 10.1) and fish (28%, SE 9.5). In the Palaearctic region, over a wide gradient of habitats, otters appeared strongly specialised on prey taken from water, whereas American mink was a typical generalist capable of utilising several prey groups originating from both water and land.  相似文献   

7.
Knowledge about interactions between endangered native southern river otters (Lontra provocax) and introduced American mink (Neovison vison) is essential for effective management of both species. We evaluated competition for spatial and trophic niches between otter and mink in overlapping and non-overlapping areas, comparing distribution, habitat preference, diet and mink marking behavior. We surveyed otter and mink signs along 250 km of Beagle Channel coastline. Habitat suitability models were constructed based on species presence/absence and habitat characteristics, using generalized linear models. Feces were collected for diet analyses. Otters used forested coasts with 12°–32° shoreline slope and without human influence, and our evidence suggests they were not affected by mink presence. Mink preferred forested and shrubland coasts with 10°–28° shoreline slope. Neither human influence nor otter presence affected mink habitat occupation, but in the presence of otters, mink left fewer signs. Otters consumed more aquatic prey than mink, and mink modified their diet in the presence of otters, consuming more exotic small terrestrial mammals and less fish as well as shifting to smaller and shallower fish species that are less consumed by otters. Mink showed more plastic, generalist behavior than otters, being more tolerant of human presence, using more habitat types and having greater diet breadth. At the same time, otters apparently affect mink adversely and could help limit their invasion in sympatric areas. Conservation and recovery of otters, therefore, may produce a secondary benefit of simultaneously reducing the effect of mink, thereby providing an additional way to control this exotic predator’s population.  相似文献   

8.
As part of a conservation initiative, we released captive-bred individuals of European mink (Mustela lutreola) onto a Baltic island ‘sanctuary’, Hiiumaa (Estonia), and investigated the development of their diet in the wild. Fifty-four animals out of the 172 released were equipped with radio collars and tracked in 2000–2003 intensively after release. Based on the analysis of the contents of 564 collected scats, we monitored how the diet of released individuals changed after release and how this was affected by habitat and by season. Diet changed as they adapted to the wild: some prey consumed immediately after release were later substituted with prey more typical of wild European mink elsewhere. The mink’s tendency to take typical prey increased (crayfish, 3; fish, 1.5; and small mammals, 2 times), while the proportion of atypical prey decreased more than five times in 60 days after release. Once established in the wild, the composition of the diet and its variation between seasons, habitats or weather conditions were similar to that reported elsewhere for wild European mink. There is no indication therefore that the components of the diet provided in captivity persisted in the wild after the adaptation period. We suggest that the adaptation of released carnivores to natural prey merits more attention in reintroduction projects.  相似文献   

9.
Introduced species must adapt their ecology, behaviour, and morphological traits to new conditions. The successful introduction and invasive potential of a species are related to its levels of phenotypic plasticity and genetic polymorphism. We analysed changes in the body mass and length of American mink (Neovison vison) since its introduction into the Warta Mouth National Park, western Poland, in relation to diet composition and colonization progress from 1996 to 2004. Mink body mass decreased significantly during the period of population establishment within the study area, with an average decrease of 13% from 1.36 to 1.18 kg in males and of 16% from 0.83 to 0.70 kg in females. Diet composition varied seasonally and between consecutive years. The main prey items were mammals and fish in the cold season and birds and fish in the warm season. During the study period the proportion of mammals preyed upon increased in the cold season and decreased in the warm season. The proportion of birds preyed upon decreased over the study period, whereas the proportion of fish increased. Following introduction, the strictly aquatic portion of mink diet (fish and frogs) increased over time, whereas the proportion of large prey (large birds, muskrats, and water voles) decreased. The average yearly proportion of large prey and average‐sized prey in the mink diet was significantly correlated with the mean body masses of males and females. Biogeographical variation in the body mass and length of mink was best explained by the percentage of large prey in the mink diet in both sexes, and by latitude for females. Together these results demonstrate that American mink rapidly changed their body mass in relation to local conditions. This phenotypic variability may be underpinned by phenotypic plasticity and/or by adaptation of quantitative genetic variation. The potential to rapidly change phenotypic variation in this manner is an important factor determining the negative ecological impacts of invasive species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 681–693.  相似文献   

10.
Interspecific competition is one of several constraints that might prevent an individual from maximising its energy intake. When an interspecific competitor is introduced, an individual is often forced to shift its diet according to the intensity of the competitive pressure. In this paper, we explore whether the introduced American mink ( Mustela vison Schreber) shifts its diet when the density of its potential competitor, the Eurasian otter ( Lutra lutra L.), is increased. We compared the diets of otter and mink at the same location but at two moments in time when the relative densities of these two species were different while controlling for the abundance of aquatic prey. Mink and otters are semi-aquatic mammals belonging to the same guild of mustelids and otters are expected to be the dominant competitor because they are larger and better at hunting underwater. The diets of otters and mink overlap to a great extent but while otters specialise mainly on aquatic prey, mink are able to exploit both aquatic and terrestrial prey. These observations prompted the hypothesis investigated in this work that at higher otter densities the diet of mink should change to include a higher proportion of terrestrial items. This hypothesis was supported by the data and at higher otter densities mink diet was observed to consist of a higher proportion of mammals and birds while fewer fish were present, although this pattern was present only in winter while no changes were observed in spring. Meanwhile the diet of otters remained basically unchanged. In the second part of the study, we investigated whether niche breadth and niche overlap between otter and mink changed at different otter densities. We found that niche overlap declined as the density of otters increased, in agreement with the prediction of habitat selection theory.  相似文献   

11.
The diet of a coast-living population of mink was investigated from the scats collected over a three-year period, and compared with information on the availability of principal prey species. Lagomorphs were the single most important prey, and predation upon them matched the abundance of rabbits as determined by monthly counts. Aquatic foraging was particularly important, with rockpool-inhabiting fish accounting for 29–1% occurrence of food items. Fish predation was more pronounced during winter months when lagomorph prey was less available. Crustacean prey, particularly the shore crab, Carcinus maenas , occurred frequently in the diet. Seabirds figured regularly in the diet; these were either taken as carrion from the strand-line or through predation on breeding colonies during the summer months.  相似文献   

12.
Diet composition, niche measures, and prey consumption of three sympatric species of carnivores, one non-native and introduced, the American minkNeovison vison Schreber, 1777, and two native, the spotted genetGenetta genetta Linnaeus, 1758 and the Eurasian otterLutra lutra Linnaeus, 1758, were studied in a Spanish Mediterranean area. The study was based on the analysis of prey remains in the faeces of the predators. Faeces of mink (n = 444), genet (n = 310), and otter (n = 108) were collected all year round for four years along the Llobregat (21 km) and Gavarresa rivers (12 km). Simultaneously, and in the same area, prey species density and weight were estimated by means of trapping. The diet of mink and genet was dominated by the American crayfishProcambarus clarkii, while the otter fed almost exclusively on fish. Compared to the mink, the genet seemed to specialise more on small mammals while the mink specialised more on aquatic birds, especially in autumn-winter. Niche overlap was higher between mink and genet than between either of them and the otter.  相似文献   

13.
With ecosystems increasingly having co-occurring invasive species, it is becoming more important to understand invasive species interactions. At the southern end of the Americas, American beavers (Castor canadensis), muskrats (Ondatra zibethicus), and American mink (Neovison vison), were independently introduced. We used generalized linear models to investigate how muskrat presence related to beaver-modified habitats on Navarino Island, Chile. We also investigated the trophic interactions of the mink with muskrats and beavers by studying mink diet. Additionally, we proposed a conceptual species interaction framework involving these invasive species on the new terrestrial community. Our results indicated a positive association between muskrat presence and beaver-modified habitats. Model average coefficients indicated that muskrats preferred beaver-modified freshwater ecosystems, compared to not dammed naturally flowing streams. In addition, mammals and fish represented the main prey items for mink. Although fish were mink’s dominant prey in marine coastal habitats, muskrats represented >50 % of the biomass of mink diet in inland environments. We propose that beavers affect river flow and native vegetation, changing forests into wetlands with abundant grasses and rush vegetation. Thus, beavers facilitate the existence of muskrats, which in turn sustain inland mink populations. The latter have major impacts on the native biota, especially on native birds and small rodents. The facilitative interactions among beavers, muskrats, and mink that we explored in this study, together with other non-native species, suggest that an invasive meltdown process may exist; however further research is needed to confirm this hypothesis. Finally, we propose a community-level management to conserve the biological integrity of native ecosystems.  相似文献   

14.
Trevor B.  Poole  Nigel  Dunstone 《Journal of Zoology》1976,178(3):395-412
Fishing behaviour of the American mink ( Mustela vison Schreber) was investigated in the laboratory. Data were recorded using ciné film and tape recorded commentaries. Three species of prey were presented to mink, namely, carp ( Cyprinus curpio ), goldfish ( Carassius auratus ) and minnows ( Phoxinus phoxinus ).
It was found to be necessary to train ranch-bred mink to enter water and catch fish; young mink appeared to be easier to train than adults. Mink spent 5–20 sec under water when fishing; prey had usually previously been located from an aerial vantage point. Predatory behaviour was highly organized sequentially whereas fish were more prone to indulge in unpredictable stratagems; the behaviour of mink and fish were highly correlated.
The mink's efficiency in catching fish was related to prey size (smaller individuals being more vulnerable to capture) and shoaling. Minnows, which form highly organized shoals, were less easily caught when present in large numbers; this was not true of a loosely shoaling species, the carp.
Of the three species of prey presented, vulnerability to capture took the form goldfish> carp> minnow; these differences, however, may have been influenced by the fish's previous experience of underwater predators.  相似文献   

15.
Being the interface of sea and land, the coast can be invaded by introduced species coming from either of these two worlds. Recent reviews of coastal invasions emphasize the human-mediated transport of non-indigenous marine plants and invertebrates, forgetting the potential role of invaders of terrestrial origin. By studying the diet of the introduced American mink (Mustela vison) on a rocky shore of southwestern Europe, we draw attention to the potential impact on intertidal communities of exotic species coming from inland. We analysed 199 mink faeces collected in August 1997 and August 1999 in Baiona, a coastal and urban area of northern Spain recently invaded by minks. The diet of the species was based almost exclusively on crabs (45.4% of individual prey) and fish (53.3%). Most crabs were marbled crabs (Pachygrapsus marmoratus) and most fish were adult blennies (Coryphoblennius galerita and Lipophrys pholis). Given its energy requirements (about 1250 kJ/day), a single mink will consume during the month of August approximately 945 blennies and 496 crabs. Although we lack accurate data on mink abundance, a cautious estimation (4 mink/km before dispersal), supported by field observations, suggests that predation in August may reach 3780 blennies and 1984 crabs per km of shoreline. This predation pressure could affect the numbers of blennies and (less probably) crabs, indirectly benefiting the populations of their prey, that is, sessile invertebrates and snails. More field research is needed, but our results suggest that an exotic non-marine top predator such as the American mink could affect intertidal communities in Eurasia.  相似文献   

16.
The ontogenetic, diel, seasonal, and yearly variations in gut fullness, diet, and prey diversity for a California estuarine gobiid (Lepidogobius lepidus Girard) were examined. Also the feeding behavior of this species was described.Small (<50 mm, SL) and large (? 50 mm, SL) gobies consumed similar prey types in different proportions. Major prey items were polychaetes, harpacticoid copepods, gammarid amphipods, molluscs, and other crustaceans. Diets of large and small gobies were not significantly correlated, and larger fish had a more diverse diet. Small fish fed at all times while larger gobies fed primarily at night. Changes in diet may be related to differential prey preferences, feeding chronologies, and increases in fish size.Both large and small gobies displayed seasonal differences in diet and prey diversity. Year-to-year changes in diet also were noted for both size classes. The bay goby uses different feeding behaviors to capture sedentary and motile prey and appears to forage opportunistically. This behavior is probably advantageous in an environment which fluctuates drastically.  相似文献   

17.
Seasonal and ontogenetic variations in space and food use by Leuciscus pyrenaicus were analysed in a Portuguese lowland catchment. Large fish occurred mostly in deep permanent-flowing sites whereas small fish occurred mostly in the shallowest intermittent-flowing site. No seasonal or size-related changes in feeding intensity were found, but the diet changed both across seasons and throughout ontogeny. The diet was dominated by aquatic prey over all seasons, but during winter and summer more plant material and terrestrial prey, respectively, were eaten. Throughout ontogeny fish shifted from soft-bodied to hard-shelled prey and decreased animal prey breadth. Mean prey size increased with fish size but the prey size spectrum was more variable for medium-sized fish than for either small or large fish. It is suggested that: (i) large fish avoid shallow drying areas owing to the risk of mortality, either by thermal and respiratory stresses or increased predation by mammals and birds; (ii) seasonal changes in diet are a response to differences in prey availability; and (iii) morphological constraints, prey handling costs and habitat partitioning are responsible for size-related changes in diet.  相似文献   

18.
The alien invasive American mink Neovison vison is fully established in the low species richness and competitor-free environment of Iceland. This study documents the diversity as well as seasonal and sexual variation in the diet of mink in Iceland based on stomach contents. Seasonal changes mainly reflected variation in abundance of migratory birds and wood mice Apodemus sylvaticus. In comparison with mink elsewhere in similar habitats, the mink in Iceland consumed more fish and birds and fewer mammals, which is in accordance with local availability. This reinforces evidence of opportunistic foraging. Females generally ate more fish and fewer birds than males and this might be explained by their smaller body size and possible limitation in catching larger birds. Mink in coastal habitats showed greater sexual differences in diet than mink in riparian habitats, probably reflecting less prey diversity in riparian habitats than coastal ones. This study is an input towards explaining the ecological consequences of sexual size dimorphism and supports the hypothesis that generalist species might be successful invaders due to their capability in utilising new and diverse resources. The mink in Iceland can be regarded as a model for a small-bodied semi-aquatic carnivore away from the confounding effects of inter-specific competition.  相似文献   

19.
Optimal foraging and habitat selection theories predict that heterogeneous environments should favour the coexistence of competitors, especially when the dominant competitor is a specialist and the sub-ordinate is a generalist. In this paper, we analysed differential habitat use as a potential mechanism for the coexistence of two competing riparian mammals, the specialist and dominant Eurasian otter ( Lutra lutra ) and the generalist and sub-ordinate American mink ( Mustela vison ). We tested three hypotheses: H1: mink coexist with otters for longer in areas with abundance of habitats hosting terrestrial prey because, by not relying on aquatic prey, mink can segregate from its competitor. H2: the characteristics of the habitat closer to the riverbank will affect the length of time the two species coexist, because mink are still tied to the water even in the presence of otters. H3: denser vegetative cover along the bank increases the duration of coexistence of mink and otters because it reduces the frequency of their encounters. The first hypothesis was supported by the data and we found that in areas where terrestrial prey was abundant mink coexisted for longer with otters. The second hypothesis was also supported by the data and the characteristics of the habitat closer to the riverbank were the most important in determining coexistence time. Finally, we did not find supporting evidence for the third hypothesis. This study provides strong evidence that habitat heterogeneity plays an important role in determining the likelihood of coexistence of American mink with Eurasian otters. This result is particularly important from a conservation standpoint. Mink are invasive and a threat to endangered species in parts of their range. The knowledge that mink have a higher chance to persist in the presence of otters when terrestrial prey is abundant should be used to target areas for preferential mink management.  相似文献   

20.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号