首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mutation diabetes in the mouse occurs in the C57BL/Ks strain. All homozygous animals (db/db) develop obesity, elevated blood sugar levels and increased or normal blood insulin concentration. The defects in cellular immunity in db/db mice and their littermate controls were examined both in vivo and in vitro. Significant suppression of delayed footpad swelling and first and second set skin allograft rejection time were observed. In addition, DNA synthesis in spleen cells after nonspecific mitogen stimulation was markedly inhibited. Diabetic animals with a mean blood sugar of 512 +/- 101 mg/100 ml did not respond to exogenous insulin therapy by lowering their blood sugar levels or reversing the defect in DNA synthesis. Adding insulin to spleen cell culture in vitro had no demonstrable effect on their response to mitogens. Thus, mutation diabetic mice with their known defect in the peripheral utilization of insulin have markedly suppressed cell-mediated immune mechanisms.  相似文献   

2.
The amount of phosphofructokinase based on total soluble protein in extracts of skeletal muscle from genetically diabetic mice C57BL/KsJ (db/db) was about 30% lower than that of normal controls (db/m). Organic phosphate content of five control animals varied between 0.11 and 0.19 mol/mol protomer. On the other hand, the phosphate content of diabetic mice had a much broader range (0.11 to 0.39) with a mean content for five animals of 0.24 mol/mol enzyme protomer. Partial resolution of high- and low-phosphate forms can be achieved by ion-exchange chromatography. The more highly phosphorylated enzyme is slightly more sensitive to ATP inhibition than the low-phosphate enzyme.  相似文献   

3.
Deregulation of Akt signaling is important in the brain injuries caused by cerebral ischemia in diabetic animals, and the underlying mechanism is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following focal cerebral ischemia in type 2 diabetic db/db mice and their control littermates non-diabetic db/+ mice. db/db mice showed a significant elevation in the expression of CTMP compared to db/+ mice under normal physiological conditions. After ischemia, db/db mice exhibit higher levels of CTMP expression, decreased Akt kinase activity, adverse neurological deficits and cerebral infarction than db/+ mice. To further certain the effectiveness of Akt signaling to the final outcome of cerebral ischemia, the animals were treated with LY294002, an inhibitor of the Akt pathway, which aggravated the ischemic injury in db/+ mice but not in db/db mice. RNA interference-mediated depletion of CTMP were finally applied in db/db mice, which restored Akt activity, improved neurological scores and reduced infarct volume. These results suggest that elevation of CTMP in diabetic mice suppresses Akt activity and ultimately negatively affects the outcome of ischemia. Inhibitors specifically targeting CTMP may be beneficial in the treatment of cerebral ischemia in patients with diabetes.  相似文献   

4.
Developmental changes in lipogenesis have been examined in interscapular brown adipose tissue (BAT), epididymal white adipose tissue and the liver of genetically diabetic (db/db) mice and their normal siblings. Lipogenesis was measured in vivo with 3H2O, from weaning (21 days of age) until 20 weeks of age. Hyperinsulinaemia was evident in db/db mice at all ages. Low rates of lipogenesis were observed at weaning in tissues of both groups of mice, but the rate rose rapidly in the first few days post-weaning. In normal mice, peak lipogenesis was obtained in each tissue at 4-5 weeks of age, and there were no major changes (on a whole-tissue basis) thereafter. A different developmental pattern was apparent in db/db mice. The rate of lipogenesis in BAT rose sharply after weaning, reaching a peak at 26 days of age (several times higher than normal mice), and then falling rapidly such that by 45 days of age it was lower than in normal mice; at age 20 weeks lipogenesis in BAT of the diabetic animals was negligible. In white adipose tissue of the db/db mutants lipogenesis (per tissue) reached a maximum at 5 weeks of age, and fell substantially between 10 and 20 weeks of age. Hepatic lipogenesis in the db/db mice rose progressively from weaning until 8 weeks of age, and then decreased. Except at weaning, hepatic lipogenesis (per tissue) was much greater in db/db mice than in normal mice, and the liver was a more important site of lipogenesis in diabetic mice than in normals, accounting for up to 60% of the whole-body total. In contrast, BAT accounted for a considerably smaller proportion of whole-body lipogenesis in db/db mice than in normal mice. It is concluded that there are major developmental differences in lipogenesis between tissues of db/db mice, and between diabetic and normal animals. The data suggest that there is an early and preferential development of insulin resistance in BAT of the db/db mutant.  相似文献   

5.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

6.
C-Fos在db/db自发性糖尿病小鼠颌下腺的表达   总被引:4,自引:0,他引:4  
目的观察转基因糖尿病小鼠下颌下腺形态学改变与原癌基因C-fos蛋白表达的关系,为糖尿病的临床及基础研究提供依据。方法引进日本C57BL/ksj-db/ m表型正常隐性基因小鼠,其近亲交配所得纯合子后代,即为db/db(单基因遗传自然发病型)糖尿病小鼠。取3、4、6、8、10月龄db/db糖尿病小鼠及相应月龄的db/ m正常小鼠下颌下腺,行HE染色及SP免疫组化染色后进行图象分析,统计各组下颌下腺C-fos阳性表达的细胞数,观察其形态学改变。结果糖尿病小鼠下颌下腺腺泡萎缩,细胞缩小,形态不规则,排列不整齐。各月龄糖尿病小鼠颌下腺C-Fos阳性细胞明显低于相应对照组(P<0.01),且逐渐减少,呈下降趋势。结论db/db糖尿病状态下颌下腺细胞表达C-Fos蛋白明显降低,c-fos低表达可能与下颌下腺实质细胞的增殖减弱性形态学变化密切相关。  相似文献   

7.
8.
Thymic dysfunction in the mutant diabetic (db/db) mouse   总被引:3,自引:0,他引:3  
Thymic function has been explored in genetically diabetic homozygous C57BL/KsJ (db/db) mice by evaluating their serum thymic factor (FTS) levels with a rosette assay. As previously reported for other autoimmune mice (NZB or MRL/I mice), the age-dependent decline of FTS levels was significantly accelerated in diabetic mice when compared to heterozygous littermates. Furthermore, FTS inhibitory molecules were detected in db/db mouse sera (as early as 10 wk of age) as evaluated by their ability to absorb in vitro the activity of synthetic FTS in the rosette assay, and in vivo for their capacity to induce the disappearance of endogenous FTS when injected into normal mice. These inhibitors were shown to be immunoglobulins. Histologically, the thymus presented an accelerated involution starting with a cortical lymphocytic depletion and an increased number of Hassall's corpuscles. Ultrastructural studies showed alterations in thymic epithelial cells, mainly represented by an increasing number of cytoplasmic vacuoles. By means of indirect immunofluorescence with anti-FTS monoclonal antibodies, it was shown that the number of FTS+ cells was reduced in db/db mouse thymuses: at the age of 22 wk, diabetic mice had 10 times fewer FTS+ cells than heterozygotes of the same age. Taken together, these results indicate important abnormalities in the thymus of diabetic mice. It is possible that the associated lymphocyte dysfunction plays a role in the pathogenesis of the autoimmune disease presented by db/db mice.  相似文献   

9.
Treatment of diabetes-impaired wound healing remains a major unresolved medical challenge. Here, we identified suppressed formation of a novel reparative lipid mediator 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in cutaneous wounds of diabetic db/db mice. These results indicate that diabetes impedes the biosynthetic pathways of 14S,21R-diHDHA in skin wounds. Administration of exogenous 14S,21R-diHDHA to wounds in diabetic animals rescued healing and angiogenesis. When db/db mesenchymal stem cells (MSCs) were administered together with 14S,21R-diHDHA to wounds in diabetic animals, they coacted to accelerate wound re-epithelialization, granulation tissue formation, and synergistically improved vascularization. In the pivotal cellular processes of angiogenesis, 14S,21R-diHDHA enhanced VEGF release, vasculature formation, and migration of db/db dermal microvascular endothelial cells (DMVECs), as well as remedied paracrine angiogenic functions of db/db MSCs, including VEGF secretion and the promotion of DMVEC migration and vasculature formation. Our results show that 14S,21R-diHDHA activates the p38 MAPK pathway in wounds, db/db MSCs, and DMVECs. Overall, the impeded formation of 14S,21R-diHDHA described in this study suggests that diabetes could affect the generation of pro-healing lipid mediators in wound healing. By restoring wound healing and MSC functions, 14S,21R-diHDHA is a new lead for the development of better therapeutics used in treating wounds of diabetics.  相似文献   

10.
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.  相似文献   

11.
1. Cytochrome P-450 concentrations were similar in male and female carrier (db/+) and diabetic (db/db) mice. Benzphetamine N-demethylase and styrene oxide hydrolase activities were 47 and 65% lower in db/+ than in db/db mice. 2. UDP-Glucuronosyltransferase activity toward 1-naphthol, estrone and diethylstilbestrol was not different between db/db and db/+, but was 40% higher in db/db mice toward testosterone. 3. Glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene and ethacrynic acid was 47 and 59% lower in db/db mice than in male db/+ mice. Female db/+ mice had similar activities to those found in diabetic animals. 4. The differences in enzyme activity between hyperinsulinemic and normal animals suggest that insulin can influence both phase I and phase II biotransformations. 5. Enzyme activities in db/+ and db/db mice were compared to those in 129 REJ and Swiss Webster mice.  相似文献   

12.
Aberrant microRNA expression patterns underlie the pathogenesis of diverse diseases, however in a disease as complex as diabetes where the liver exhibits deregulations of normal metabolic processes, the status and role of microRNAs are not yet completely understood. In a step towards unraveling this correlation, we assessed the global microRNA expression profiles in the control and diabetic (db/db) mice liver. These db/db mice were on a C57BLKS/J background and they exhibit diabetic phenotypes that are remarkably similar to those in humans. microRNA microarray profiling revealed 11 miRNAs to be up-regulated and 2 to be down-regulated in the db/db mice liver. Predicted targets of these differentially expressed microRNAs were retrieved from miRanda and TargetScan and the maximum number of commonly predicted targets mapped onto the Wnt signaling pathway that is otherwise conventionally associated with organogenesis and development. Towards validation of this prediction, we found that major components of the Wnt signaling pathway are inhibited in the db/db mice liver. A significant number of these down-regulated genes of the Wnt signaling pathway are predicted targets to the up-regulated miRNAs and specifically our results show that miR-34a and miR-22 decreased the protein levels of their targets. Overexpression of miR-34a and miR-22 and also inhibition of Wnt signaling using specific inhibitors led to increased lipid accumulation in HepG2 cells. Our data suggest that the Wnt signaling pathway could contribute towards the deregulated hepatic behavior in these animals and an altered hepatic miRNA signature could be playing a regulatory role herein.  相似文献   

13.
14.
Obesity is characterized by markedly decreased ghrelin and growth hormone (GH) secretion. Ghrelin is a GH-stimulating, stomach-derived peptide that also has orexigenic action. Ghrelin supplement may restore decreased GH secretion in obesity, but it may worsen obesity by its orexigenic action. To reveal effects of ghrelin administration on obese animals, we first examined acute GH and orexigenic responses to ghrelin in three different obese and/or diabetic mouse models: db/db mice, mice on a high-fat diet (HFD mice), and Akita mice for comparison. GH responses to ghrelin were significantly suppressed in db/db, HFD, and Akita mice. Food intake of db/db and Akita mice were basally higher, and further stimulation of food intake by ghrelin was suppressed. Pituitary GH secretagogue receptor mRNA levels in db/db and HFD mice were significantly decreased, which may partly contribute to decreased GH response to ghrelin in these mice. In Akita mice for comparison, decreased hypothalamic GH-releasing hormone (GHRH) mRNA levels may be responsible for decreased GH response, since maximum GH response to ghrelin needs GHRH. When ghrelin was injected into HFD mice with GHRH coadministrated, GH responses to ghrelin were significantly emphasized. HFD mice injected with low-dose ghrelin and GHRH for 10 days did not show weight gain. These results indicate that low-dose ghrelin and GHRH treatment may restore decreased GH secretion in obesity without worsening obesity.  相似文献   

15.
Fibroblastic cultures from the skin of nondiabetic and diabetic (db/db) mice have been used to investigate alterations in the biological responses of diabetic cells to insulin. Confluent cultures from the skin of both nondiabetic and diabetic animals possess specific receptors for insulin. Diabetic fibroblasts exhibit only 36% as much specific binding of insulin as nondiabetic fibroblasts, because of a decrease in the total number of binding sites, without a change in binding affinity. Insulin caused a time- and dose-dependent increase in the rate of 2-deoxy D-glucose (dGlc) uptake and in ornithine decarboxylase (ODC) activity of both nondiabetic and diabetic fibroblasts. In nondiabetic cells, half-maximal increase in dGlc uptake was obtained with 0.3 nM insulin, and a maximum increase of 120% was obtained with 4.1 nM insulin. In contrast, diabetic cultures required 0.8 nM insulin for a half-maximal increase in dGlc uptake, and maximum stimulation with 4.1 nM insulin was only 50% above control levels. With 4-fold higher insulin concentrations, ODC activity of diabetic cells was only 40% that of nondiabetic cells. In nondiabetic cells, down regulation of insulin receptors by insulin abolished the ability of insulin to stimulate dGlc uptake. These results demonstrate that cells cultured from diabetic animals, which possess a decreased number of insulin receptors, also exhibit decreased stimulation of deoxy D-glucose uptake and ornithin decarboxylase activity by insulin.  相似文献   

16.
Atherosclerosis development is accelerated severalfold in patients with Type 2 diabetes. In the initial stages of disease, monocytes transmigrate into the subendothelial space and differentiate into foam cells. Scavenger receptors and ATP binding cassette (ABC) Transporters play an important role in foam cell formation as they regulate the influx and efflux of oxidized lipids. Here, we show that peritoneal macrophages isolated from Type 2 diabetic db/db mice have decreased expression of the ABC transporter ABCG1 and increased expression of the scavenger receptor CD36. We found a 2-fold increase in accumulation of esterified cholesterol in diabetic db/db macrophages compared with wild-type control macrophages. Diabetic db/db macrophages also had impaired cholesterol efflux to high density lipoprotein but not to lipid-free apo A-I, suggesting that the increased esterified cholesterol in diabetic db/db macrophages was due to a selective loss of ABCG1-mediated efflux to high density lipoprotein. Additionally, we were able to confirm down-regulation of ABCG1 using C57BL/6J peritoneal macrophages cultured in elevated glucose in vitro (25 mM glucose for 7 days), suggesting that ABCG1 expression in diabetic macrophages is regulated by chronic exposure to elevated glucose. Diabetic KK(ay) mice were also studied and were found to have decreased ABCG1 expression without an increase in CD36. These observations demonstrate that ABCG1 plays a major role in macrophage cholesterol efflux and that decreased ABCG1 function can facilitate foam cell formation in Type 2 diabetic mice.  相似文献   

17.
Freeze-dried pancreas sections from 7-, 17-and 27-week-old genetically diabetic (db/db) and normal (±/±) mice were subjected to proton bombardment and the concentrations of 15 elements in B cells and exocrine pancreas were calculated from the characteristic X-rays emitted. In the 7-week-old diabetic animals, B cells contained significantly above-normal levels of Na and S, while exocrine pancreas contained subnormal levels of Ca, and excess Mn. The B cells from the 17-week-old diabetic animals contained subnormal levels of Cu and the exocrine pancreas of the 27-week-old diabetic animals was deficient in Cd. The 7-, 17- and 27-week-old, genetically diabetic (db/db) mice were hyperglycemic, hyperinsulinemic and heavier than age-matched normal (±/±) mice. Although significant changes were found in elemental composition when comparing both B cells and exocrine pancreas at different ages, the changes were not consistent. Therefore, it appears as if the measured elemental changes were random and not related to the onset of diabetes.  相似文献   

18.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

19.
Randomized clinical trials have clearly shown that inhibition of the renin-angiotensin system (RAS) will slow the rate of progression of diabetic nephropathy, but controversy remains about whether the observed beneficial effects result from more than control of blood pressure. Deletion of eNOS in a model of type II diabetes, db/db mice (eNOS(-/-) db/db), induces an accelerated nephropathy and provides an excellent model of human diabetic nephropathy. As is frequently seen in type II diabetes, blood pressure is moderately elevated in eNOS(-/-) db/db mice. To determine the role of elevated blood pressure per se vs. additional deleterious effects of the RAS in mediation of disease progression, 8-wk-old eNOS(-/-) db/db mice were randomly divided into three groups: vehicle, treatment with the angiotensin-converting enzyme inhibitor (ACEI) captopril, or treatment with "triple therapy" (hydralazine, resperine, hydrocholorothiazide), and the animals were euthanized after treatment for 12 wk. Blood pressure was reduced to comparable levels with ACE inhibition or triple therapy. Although both treatment regimens decreased development of diabetic nephropathy, ACE inhibition led to more profound reductions in albuminuria, glomerulosclerosis, markers of tubulointerstitial injury, macrophage infiltration, and markers of inflammation. Therefore, this animal model suggests that while there is an important role for blood pressure control, RAS blockade provides additional benefits in slowing the progression of diabetic nephropathy.  相似文献   

20.
For determining the implications of circulating endothelial progenitor cells (cEPCs) and cellular membrane microparticles (MPs) in diabetic stroke, levels of EPCs, EPC-MPs, and endothelium-derived MPs (EMPs) and their correlations with blood glucose concentration, cerebral microvascular density (cMVD), and ischemic damage were investigated in type 2 diabetic db/db and db/+ (wild-type control) mice. Therapeutic efficacy of EPC infusion (preincubated with MPs) was also explored. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Ischemic damage and cMVD were determined using histological analyses. The levels of cEPCs and MPs were determined using flow cytometric analyses. EPC generation and functions were evaluated by in vitro cell cultures. Results showed the following. 1) In db/db mice, the basal level of cEPCs was less and cMVDs were lower, but the levels of circulating EPC-MPs and EMPs were more; 2) MCAO induced a larger infarct volume and less of an increase in cEPCs in db/db mice; 3) the level of cEPCs correlated with blood glucose concentration (negatively), cMVD (positively), and ischemic damage (negatively), but the levels of EPC-MPs and EMPs correlated inversely with those parameters; 4) EPCs were reduced and dysfunctional in db/db mice, and preincubation with db/db MPs impaired EPC functions; and 5) infusion of EPCs preincubated with db/+ MPs increased the level of cEPCs and reduced ischemic damage, and these beneficial effects were reduced or lost in EPCs preincubated with db/db MPs. These data suggest that reduced cEPCs, impaired EPC generation/function, and increased production of MPs might be the mechanisms responsible for increased ischemic damage seen in db/db mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号