首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Leaves from mature Griffonia simplicifolia plants were examined for the presence of leaf lectins possessing sugar binding specificities similar to the four known seed lectins (GS-I, GS-II, GS-III, GS-IV). Three (GS-I, -II, -IV) of the four known G. simplicifolia seed lectins were present in the leaves. Leaf G. simplicifolia lectins I and IV were similar to the respective seed lectins. Leaf GS-II, however, was composed of two types of subunits (Mr = 33,000 and 19,000), whereas the seed lectin consists of only one type of subunit (Mr 32,500). Seed and leaf GS-II lectins also had different isoelectric points. All leaf and seed lectins were similar with respect to their hemagglutination and glycoconjugate precipitation properties and all subunits contained covalently bound carbohydrate. Leaf GS-IV appeared slightly under-glycosylated compared to seed GS-IV.

The fate of GS-I and GS-II seed lectins in aging cotyledons was investigated. GS-I isolectins usually contain isolectin subtypes associated with each main isolectin. Upon inbibition and germination, these GS-I isolectin subtypes disappeared. Over time, GS-II lectin did not change its disc gel electrophoretic properties.

  相似文献   

2.
We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 g of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.Abbreviations IEF isoelectric focusing - MW molecular weight - pI isoelectric point - Psl1, Psl2 and Psl3 pea isolectins - SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.  相似文献   

3.
Peanut lectin (or an immunologically indistinguishable material) is present in seeds of 4556 genotypes of the peanut, Arachis hypogaea, and in 65 genotypes of related species of Arachis. Seeds of one line of A. villosa and three lines of unclassified Arachis spp. are devoid of the lectin. Peanut lectin from 116 A. hypogaea genotypes is resolved by isoelectric focusing into three related isolectin profiles, which are designated the V, S, and V2 types. Each is composed of from six to eight separate isolectins. Peanut lectin from A. monticola, A. pusilla, and one genotype of Arachis spp. is of the V type; isolectin profiles from other wild Arachis genotypes are variable, but comprise several distinct groups. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate resolves peanut lectin preparations from 37 genotypes into the lectin subunit of Mr 30,000 and a second polypeptide of Mr 60,000. Lectin preparations from five genotypes lack the Mr 60,000 polypeptide band and have a subunit that migrates slightly faster (and therefore probably is of lower molecular weight) than the subunits of all other tested lines. Peanut lectin preparations from 62 lines have specific hemagglutinating activities ranging from 1024 to 4196 with desialyzed human Type O erythrocytes. The lectin from one genotype exhibits substantially less hemagglutinating activity and is hemolytic.  相似文献   

4.
Plant protoplast agglutination by lectins   总被引:2,自引:1,他引:1       下载免费PDF全文
Larkin PJ 《Plant physiology》1978,61(4):626-629
Concanavalin A, soybean (Glycine max L.) lectin, castor bean (Ricinus communis L.) lectin, and peanut (Arachis hypogaea L.) lectin were able to agglutinate protoplasts prepared from a variety of plant species. The seven other lectins tried were unable to agglutinate those protoplasts tested. Protoplasts prepared from 11 species were used. The lectins examined were not able to differentiate among protoplasts of different species.  相似文献   

5.
Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.Abbreviations Gal galactose - Gle glucose - GNL galactose-binding nodule lectin - Fru fructose - MNL mannosebinding nodule lectin - M r rerative molecular mass - PBS phosphate-buffered saline - PSL peanut seed lectin - SDS sodium dodecyl sulphate - Sorb sorbitol  相似文献   

6.
Wheat (Triticum aestivum) germ agglutinin represents a complex mixture of multiple isolectin forms. Upon ion exchange chromatography at pH 3.8, three isolectins can be separated, each of which is composed of two identical subunits. At pH 5.0, however, three additional isolectins can be distinguished, which are built up of two different subunits (heteromeric lectins). Evidence is presented that these heterodimers are normal constituents of the wheat embryo cells. Analyses of the isolectin patterns in extracts from Triticum monococcum, Triticum turgidum dicoccum and Triticum aestivum, provide evidence that each genome, either in simple or complex (polyploid) genomes, directs the synthesis of a single lectin subunit species. In addition, a comparison of the isolectin pattern in these wheat species of increasing ploidy level, made it possible to determine unequivocally the genome by which the individual lectin subunits in polyploid species are coded for. The possible use of lectins in studies on the origin of individual genoms in polyploid species is discussed.Abbreviations CL cereal lectin - PBS phosphate buffered saline - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

7.
Yellow mold of peanut (Arachis hypogaea) seedlings caused by Aspergillus flavus was first observed during May 1984 in a commercial peanut farm in south Texas. The mold caused preemergence rotting of peanut seed and seedlings. On emerged seedlings the infection was largely restricted to cotyledons. The diseased plants were chlorotic, stunted, and leaflets were reduced in size with pointed tips and vein-clearing. Aflatoxins were found in cotyledons of infected seedlings but not in roots, hypocotyls, or leaves. A. flavus was the predominant fungus in the seed lot planted by the grower. Six isolates of A. flavus isolated from the seed and diseased seedlings were pathogenic to peanut in greenhouse tests.Texas Agriculture Experiment Station No. TA 20319 and ICRISAT Journal Article No. JA 614.  相似文献   

8.
Galactoside-inhibitable lectins have been isolated from rabbit, rat, mouse, pig, lamb, calf, and human spleens. Native molecular mass, subunit structure, pI, and hemagglutinating activity have been compared for these lectins. The yields of lectin varied from 1.8 mg/kg for rabbit spleen to 79 mg/kg for lamb spleen. Pig, lamb, calf, and human spleen lectins yielded single protein peaks when subjected to Superose 12 fast-protein liquid chromatography. The apparent molecular mass for these lectins was 33-34 kDa. In contrast, rat and mouse spleen lectin preparations were separated into three components ranging from 8.4 to 34 kDa. Superose 12 chromatography of rabbit spleen lectin revealed the presence of at least six components. Gradient slab gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of single polypeptides for pig, calf, lamb, and human lectins corresponding to a molecular mass of 14-14.5 kDa. Multiple polypeptides were detected for the mouse, rat, and rabbit lectins. The molecular mass of the major polypeptides were 15, 15, and 17 kDa for rat, mouse, and rabbit, respectively. The presence of isolectins in all preparations was shown by isoelectric focusing. The major isolectins were acidic proteins with pI 4.38-4.80. Hemagglutination and hemagglutination inhibition assays demonstrated similarities as well as differences among the lectin preparations. Hemagglutinating activity could not be demonstrated in rabbit spleen extracts nor for isolated putative lectin. Human buffy coat cells were reversibly agglutinated by calf and human spleen lectins, demonstrating the presence of leucocyte cell surface lectin receptors.  相似文献   

9.
By sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis the plasma membranes from porcine lymphocytes contain at least 30--35 glycopolypeptides and one or more glycolipids to which one or more of 12 purified lectins bind. The specificities of binding generally followed the same pattern as those of the reaction of the lectin with intact pig lymphocytes. Some lectins (e.g., the isolectin pair, Agaricus bisporus lectins A and B and a group consisting of the Lens culinaris A and B isolectins and the closely related Pisum sativum lectins) bind to almost identical populations of plasma membrane components and compete with each other for all their binding sites. Others (e.g., Concanavalin A and the Lens culinaris-Pisum sativum group and a group consisting of phytohemagglutinin-L, Ricinus communis lectin-60 and Ricinus communis lectin-120 bind in a cross reactive manner to some common binding moieties but, in addition, to certain nonshared ones. Still others (e.g., soybean agglutinin, peanut agglutinin and wheat germ agglutinin) do not share any common binding moieties with the other lectins. The amount of lectin binding and the number of membrane components to which a lectin binds is directly related to the Ka of binding of the lectin to the intact lymphocyte. Those with high Ka (Cocanavalin A Lens culinaris lectins, Pisum sativum lectins, phytohemagglutinin-L), bind to 20-30 different components giving very complex binding patterns while those with lower Ka (Agaricus bisporus lectins, wheat germ agglutinin, peanut agglutinin, and soybean agglutinin) bind to 8--13 components with easily distinguishable patterns. Soybean agglutinin binds almost exclusively to a glycolipid fraction while for the others one or more glycopolypeptides served as the major lectin-binding molecule. The Ricinus lectins, two lymphocyte toxins, bind to essentially every plasma membrane component to which the mitogen phytohemagglutinin-L binds, in fact competing for most of those plasma membrane moieties which bind phytohemagglutinin-L.  相似文献   

10.
A cDNA clone obtained from developing peanut (Arachis hypogaea) seedling roots, when expressed in Escherichia coli and insect cells (Sf9) gave a 29 kDa subunit protein. The native recombinant protein agglutinates neuraminidase treated human erythrocytes and the agglutination is inhibited by galactose. Nucleotide sequence and predicted amino acid sequence analyses indicate that it is different from peanut seed (PNA and SGL) and nodule (NGLa and NGLb) galactose-binding lectins.  相似文献   

11.
Lectin variability within Phaseolus coccineus is revealed by non-denatured electrophoretic patterns and immunological labelling of total seed protein extracts, showing that the different cultivars and wild varieties studied can be classified into three main categories according to the number of isolectins (three, two or one) present in each extract. Attempts in the purification of these isolectins were performed on three different affinity systems in which ligands were thyroglobulin (known to purify the P. vulgaris isolectins), pig red cell membrane ghosts (stroma) or antibodies against the P. vulgaris cv. Contender E2L2 isolectin. The P. coccineus isolectins exhibit varied affinities towards thyroglobulin and stroma, the cathodic and anodic (pH 4.5) isolectins being respectively retained by the two systems, whereas the antibody affinity system is the only one able to purify the totality of the isolectins present in an extract.  相似文献   

12.
Seeds of six soybean lines (Glycine max (L.) Merr. cv. Columbia, D68-127, Norredo, Sooty, T-102, Wilson 5) have been reported to lack the 120 000 dalton soybean lectin. Immunofiffusion and radioimmunoassay using anti-soybean lectin immunoglobulin failed to detect the lectin in seeds of five lines, but D68-127 seeds contained as much soybean lectin as the control line, Harosoy 63. The D68-127 seed lactin could be purified by affinity chromatography on Sepharose-N-caproylgalactosamine, and was indistinguishable from the conventional soybean lectin by the following criteria: electrophoretic migration in acidic and alkaline buffers, subunit molecular weight and composition, analytical isoelectric focusing, gel filtration chromatography.Phosphate buffered saline extracts of roots, hypocotyls, stems, and leaves of 3–66-day-old Norredo and Harosoy 63 plants lacked soybean lectin, as determined by hemagglutination and radioimmunoassay (detection limit: 1.4 μg soybean lectin/g dry weight tissue). Cotyledons of Harosoy 63 (but not Norredo) contained large quantities of the lectin, which diminished as the plants aged. 5-day-old roots and hypocotyls of 20 soybean lines did not contain soybean lectin. Roots of Columbia, Norredo, Sooty, T-102, Wilson 5, and Harosoy 63 (control) were modulated by a variety of strains of Rhizobium japonicum and Rhizobium sp.  相似文献   

13.
The stems and leaves of the Dolichos biflorus plant contain a lectin that cross-reacts with antiserum against the seed lectin. This cross-reactive material (CRM) was followed during early seedling growth, stem elongation, and seed development using a specific radioimmunoassay.

No CRM was detected in developing seeds, but very low levels were found in dormant and imbibed seeds. As germination proceeds, the CRM accumulates at the apex of both etiolated and green seedlings in the epicotyl and leaves. Lower amounts of CRM are found in the cotyledons and hypocotyl, but no CRM was detected in the roots.

The amount of CRM in the first and second stem internodes increases during elongation and gradually declines after the completion of elongation. Approximately 80% of the CRM in the stems of 19-day-old Dolichos biflorus plants is associated with the elongating tissues. These results are discussed with respect to the possible roles of lectins in plants.

  相似文献   

14.
15.
The complete amino acid sequence of the alpha chains of both isolectins found in pea seeds has been determined using automated Edman degradation. We show that the alpha chains of these two proteins differ only at their C-termini: isolectin B is two amino acids longer than isolectin A. Furthermore, the alpha chains of both isolectins are shorter than would be predicted from the nucleotide sequence of a cDNA clone for pea lectin. We suggest, therefore, that these proteins arise from differential C-terminal processing. Amino acid composition data and C-terminal analysis show that the beta chains have also been processed at their C-termini, but in this case identical chains for both isolectins are produced.  相似文献   

16.
The direct double-antibody enzymelinked immunosorbent assay system was used in the detection and measurement of seed lectins from peanut (Arachis hypogaea L.) and soybean (Glycine max L.) plants (PSL and SBL, respectively) that had been inoculated with their respective rhizobia. Concentrations of PSL dropped to undetectable levels in peanut roots at 9 d and stems and leaves at 27 d after planting; SBL could no longer be detected in soybean roots at 9 d and in stems and leaves at 12 d. A lectin antigenically similar to PSL was first detected in root nodules of peanuts at 21 d reaching a maximum of 8 g/g at 29 d then decreasing to 2.5 g/g at 60 d. There was no evidence of a corresponding lectin in soybean nodules.Sugar haemagglutination inhibition tests with neuraminidase-treated human blood cells established that PSL and the peanut nodule lectin were both galactose/lactose-specific. Further tests with rabbit blood cells demonstrated a second mannosespecific lectin in peanut nodule extracts that was not detected in root extracts of four-week-old inoculated plants or six-week-old uninoculated plants, although six-week-old root extracts from inoculated plants showed weak lectin activity. The root extracts from both nodulated and uninoculated plants contained another peanut lectin that agglutinated rabbit but not human blood cells. Haemagglutination by this lectin was, however, not inhibited by simple sugars but a glycoprotein, asialothyroglobulin, was effective in this respect.Abbreviations DAS double antibody sandwich - ELISA enzyme-linked immunosorbent assay - PBS phosphate-buffered saline - PSL peanut seed lectin - SBL soybean lectin  相似文献   

17.
Four isolectin forms of a seed lectin from mature seed of tepary bean (Phaseolus acutifolius) were isolated using solubility fractionation, affinity chromatography, and high performance liquid chromatography. The subunits are polypeptides with an apparent molecular mass of 30,000 daltons. The 30 kilodalton subunits are produced starting approximately 13 days after flowering and subsequently comprise a major fraction of the proteins found in the mature seed. The amino terminus of each isolectin fraction was determined to be highly homologous with that of the subunits of common bean (Phaseolus vulgaris L.) phytohemagglutinin (PHA). The tepary isolectin cross-reacts with both erythroagglutinating and leucoagglutinating subunits of PHA antibodies, although differential cross-reactivity was noted. A seed protein fraction enriched in tepary bean lectin was found to be toxic to bean bruchid beetles (Acanthoscelides obtectus), when incorporated into their diets at incremental concentrations from (1-5% w/w) above that of PHA concentrations in mature seeds of the susceptible common bean variety “Red Kidney.”  相似文献   

18.
The distribution of lectin activity in soybean and peanut plants has been investigated. In both plants activity is found in all tissues examined (roots, shoots and leaves) at all stages of development from seedling to maturity (7 weeks). The cellular location of the lectins differs between soybean and peanut: in soybean the lectins are generally membrane-associated, whereas in peanut plants lectin activity is present also in the soluble cytoplasmic fraction. The membrane-associated lectins appear to differ from the seed lectins of the respective plants. The function of membrane-associated lectins is discussed.Abbreviations RCA lectin of castor bean - SBA soybean agglutinin - PNA peanut agglutinin - HEPES 2-[4-(2-Hydroxyethyl)-piperazinyl-(1)]ethanesulphonic acid - MES morpholinoethane sulphonic acid - PBS phosphate-buffered saline  相似文献   

19.
We have recently observed that certain asparagine-linked oligosaccharides are multivalent and capable of binding and precipitating with the D-mannose-specific lectin concanavalin A [cf. Bhattacharyya, L., & Brewer, C. F. (1989) Eur. J. Biochem. 178, 721-726] and with a variety of D-galactose-specific lectins [Bhattacharyya, L., Haraldsson, M., & Brewer, C. F. (1988) Biochemistry 27, 1034-1041]. In the present study, we have examined the binding and precipitating activities of a variety of mono- and biantennary L-fucosyl oligosaccharides with three L-fucose-specific isolectins from Lotus tetragonolobus, LTL-A, LTL-B, and LTL-C. The results show that certain difucosyl biantennary oligosaccharides are capable of cross-linking and precipitating with tetrameric isolectins, LTL-A and LTL-C, but not with dimeric isolectin, LTL-B. Quantitative precipitation analyses show that biantennary oligosaccharides containing the Lewis(x) antigen (or type 2 chain of Lewis(a)), Gal beta (1-4)[Fuc alpha (1-3)]GlcNAc, at the nonreducing terminus of each arm are bivalent ligands. However, a biantennary oligosaccharide containing a Lewis(x) determinant on one arm and a type 2 chain of blood group H(O) determinant, Fuc alpha (1-2)Gal beta (1-4)GlcNAc, on the other arm and a monoantennary oligosaccharide containing two fucose residues (analogue of the Lewis(y) antigen) bind but do not precipitate with the isolectins, indicating that the positions and linkage of fucose residues are critical for cross-linking.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Using high resolution ion-exchange chromatography and isoelectric focusing the heterogeneity of the daffodil ( Narcissus sp.) lectin in terms of isolectin composition was analyzed. A survey of about 30 cultivars and species of Narcissus demonstrates (i) that they all contain over 50 different lectin polypeptides and (ii) that there are pronounced inter- and intraspecies differences in the isolectin patterns. Analyses of lectin preparations isolated from different tissues at different developmental stages further indicate that the isolectin composition is tissue specific and developmentally regulated. Finally, affinity chromatography experiments suggest differences in affinity for a mannose-Sepharose 4B column of different isolectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号