首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In yeast, the sorting of transmembrane proteins into the multivesicular body (MVB) internal vesicles requires their ubiquitylation by the ubiquitin ligase Rsp5. This allows their recognition by the ubiquitin-binding domains (UBDs) of several endosomal sorting complex required for transport (ESCRT) subunits. K63-linked ubiquitin (K63Ub) chains decorate several MVB cargoes, and accordingly we show that they localize prominently to the class E compartment, which accumulates ubiquitylated cargoes in cells lacking ESCRT components. Conversely, yeast cells unable to generate K63Ub chains displayed MVB sorting defects. These properties are conserved among eukaryotes, as the mammalian melanosomal MVB cargo MART-1 is modified by K63Ub chains and partly missorted when the genesis of these chains is inhibited. We show that all yeast UBD-containing ESCRT proteins undergo ubiquitylation and deubiquitylation, some being modified through the opposing activities of Rsp5 and the ubiquitin isopeptidase Ubp2, which are known to assemble and disassemble preferentially K63Ub chains, respectively. A failure to generate K63Ub chains in yeast leads to an MVB ultrastructure alteration. Our work thus unravels a double function of K63Ub chains in cargo sorting and MVB biogenesis.  相似文献   

2.
The sequential action of five distinct endosomal‐sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT‐III is a highly ordered process. We show that the length of ESCRT‐III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT‐II regulates ESCRT‐III assembly. The first step of ESCRT‐III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT‐II. The ESCRT‐II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT‐II complex contains two Vps25 molecules (arms) that generate a characteristic Y‐shaped structure. Mutant ‘one‐armed’ ESCRT‐II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT‐III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT‐III complex. We propose that ESCRT‐II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.  相似文献   

3.
Trehalose serves as a storage source of carbon and plays important roles under various stress conditions. For example, in many organisms trehalose has a critical function in preserving membrane structure and fluidity during dehydration/rehydration. In the yeast Saccharomyces cerevisiae, trehalose accumulates in the cell when the nutrient supply is limited but is rapidly degraded when the supply of nutrients is renewed. Hydrolysis of trehalose in yeast depends on neutral trehalase and acid trehalase (Ath1). Ath1 resides and functions in the vacuole; however, it appears to catalyze the hydrolysis of extracellular trehalose. Little is known about the transport route of Ath1 to the vacuole or how it encounters its substrate. Here, through the use of various trafficking mutants we showed that this hydrolase reaches its final destination through the multivesicular body (MVB) pathway. In contrast to the vast majority of proteins sorted into this pathway, Ath1 does not require ubiquitination for proper localization. Mutagenesis analyses aimed at identifying the unknown targeting signal revealed that the transmembrane domain of Ath1 contains the information sufficient for its selective sequestration into MVB internal vesicles.  相似文献   

4.
Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.  相似文献   

5.
The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.  相似文献   

6.
Protein sorting into multivesicular endosomes   总被引:30,自引:0,他引:30  
Multivesicular endosomes are important as compartments for receptor downregulation and as intermediates in the formation of secretory lysosomes. Work during the past year has shed light on the molecular mechanisms of protein sorting into multivesicular endosomes and yielded information about the machinery involved in multivesicular endosome formation. Monoubiquitination functions as a signal for sorting transmembrane proteins into intraluminal vesicles of multivesicular endosomes and subsequent delivery to lysosomes. A molecular machinery that contains the ubiquitin-binding protein Hrs/Vps27 appears to be central in this sorting process. Three conserved multisubunit complexes, ESCRT-I, -II and -III, are essential for both sorting and multivesicular endosomes formation. Enveloped RNA viruses such as HIV can redirect these complexes from multivesicular endosomes to the plasma membrane to facilitate viral budding.  相似文献   

7.
Katzmann DJ  Babst M  Emr SD 《Cell》2001,106(2):145-155
The multivesicular body (MVB) pathway is responsible for both the biosynthetic delivery of lysosomal hydrolases and the downregulation of numerous activated cell surface receptors which are degraded in the lysosome. We demonstrate that ubiquitination serves as a signal for sorting into the MVB pathway. In addition, we characterize a 350 kDa complex, ESCRT-I (composed of Vps23, Vps28, and Vps37), that recognizes ubiquitinated MVB cargo and whose function is required for sorting into MVB vesicles. This recognition event depends on a conserved UBC-like domain in Vps23. We propose that ESCRT-I represents a conserved component of the endosomal sorting machinery that functions in both yeast and mammalian cells to couple ubiquitin modification to protein sorting and receptor downregulation in the MVB pathway.  相似文献   

8.
The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.  相似文献   

9.
We compared the internalization and intracellular sorting of epidermal growth factor receptor (EGF-R) and point mutant kinase-negative EGF-R separately expressed in NIH 3T3 cells lacking endogenous receptor. Both EGF-Rs internalized rapidly, but kinase-negative receptor was surface down-regulated only with monensin or at 20 degrees C. Furthermore, EGF internalized by mutant receptor alone was, in significant proportion, returned to the cell surface undegraded. Hence unlike wild-type receptor, kinase-negative EGF-R recycles. By electron microscopy the early pathways of endocytosis for the two receptors were identical; however, after 10-20 min the pathways diverged at the multivesicular body (MVB). Wild-type EGF-R, destined for degradation, localized to internal vesicles, while kinase-negative EGF-R, destined for recycling, localized to surface membranes of the MVBs and moved to small tubulovesicles. We conclude that sorting of internalized receptor for degradation or recycling can occur through spatial segregation within the MVB, and sorting of EGF-R is controlled by tyrosine kinase activity.  相似文献   

10.
Sorting of ubiquitinated endosomal membrane proteins into the MVB pathway is executed by the class E Vps protein complexes ESCRT-I, -II, and -III, and the AAA-type ATPase Vps4. This study characterizes ESCRT-II, a soluble approximately 155 kDa protein complex formed by the class E Vps proteins Vps22, Vps25, and Vps36. This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo. We propose that the ESCRT complexes perform a coordinated cascade of events to select and sort MVB cargoes for delivery to the lumen of the vacuole/lysosome.  相似文献   

11.
In Saccharomyces cerevisiae, integral plasma membrane proteins destined for degradation and certain vacuolar membrane proteins are sorted into the lumen of the vacuole via the multivesicular body (MVB) sorting pathway, which depends on the sequential action of three endosomal sorting complexes required for transport. Here, we report the characterization of a new positive modulator of MVB sorting, Ist1. We show that endosomal recruitment of Ist1 depends on ESCRT-III. Deletion of IST1 alone does not cause cargo-sorting defects. However, synthetic genetic analysis of double mutants of IST1 and positive modulators of MVB sorting showed that ist1Delta is synthetic with vta1Delta and vps60Delta, indicating that Ist1 is also a positive component of the MVB-sorting pathway. Moreover, this approach revealed that Ist1-Did2 and Vta1-Vps60 compose two functional units. Ist1-Did2 and Vta1-Vps60 form specific physical complexes, and, like Did2 and Vta1, Ist1 binds to the AAA-ATPase Vps4. We provide evidence that the ist1Delta mutation exhibits a synthetic interaction with mutations in VPS2 (DID4) that compromise the Vps2-Vps4 interaction. We propose a model in which the Ist1-Did2 and Vta1-Vps60 complexes independently modulate late steps in the MVB-sorting pathway.  相似文献   

12.
The multivesicular body (MVB) sorting pathway impacts a variety of cellular functions in eukaryotic cells. Perhaps the best understood role for the MVB pathway is the degradation of transmembrane proteins within the lysosome. Regulation of cargo selection by this pathway is critically important for normal cell physiology, and recent advances in our understanding of this process have highlighted the endosomal sorting complexes required for transport (ESCRTs) as pivotal players in this reaction. To better understand the mechanisms of cargo selection during MVB sorting, we performed a genetic screen to identify novel factors required for cargo-specific selection by this pathway and identified the Mvb12 protein. Loss of Mvb12 function results in differential defects in the selection of MVB cargoes. A variety of analyses indicate that Mvb12 is a stable member of ESCRT-I, a heterologous complex involved in cargo selection by the MVB pathway. Phenotypes displayed upon loss of Mvb12 are distinct from those displayed by the previously described ESCRT-I subunits (vacuolar protein sorting 23, -28, and -37), suggesting a distinct function than these core subunits. These data support a model in which Mvb12 impacts the selection of MVB cargoes by modulating the cargo recognition capabilities of ESCRT-I.  相似文献   

13.
The accurate distribution and recycling of transmembrane proteins amongst the membrane-bound organelles of the cell is vital to ensure its correct functioning. Transmembrane protein cargo destined for clathrin-mediated endocytosis and transport along the endocytic pathway is sorted into transport vesicles by interactions with adaptors, which simultaneously link clathrin to the membrane. Clathrin adaptors recognize a variety of signals present in the cytoplasmic portions of cargo proteins; recent structural, biophysical and cell biological studies have elucidated new types of cargo-adaptor interactions and probed the molecular mechanisms regulating cargo selection and vesicle maturation. Here, we review this recent progress in the context of our existing knowledge of endocytic sorting mechanisms.  相似文献   

14.
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.  相似文献   

15.
The endocytic pathway transports cargo from the plasma membrane to early endosomes, where certain cargoes are sorted to the late endosome/multivesicular body. Biosynthetic cargo destined for the lysosome is also trafficked through the multivesicular body. Once delivered to the multivesicular body, cargo destined for the interior of the lysosome is selectively sorted into vesicles that bud into the lumen of the multivesicular body. These vesicles are released into the lumen of the lysosome upon the fusion of the multivesicular body and lysosomal limiting membranes. The yeast protein Fab1, which catalyzes the production of phosphatidylinositol (3,5) bisphosphate [PtdIns(3,5)P2], is necessary for proper sorting of biosynthetic cargo in the multivesicular body. Utilizing an endocytosis screen, we isolated a novel allele of FAB1 that contains a point mutation in the lipid kinase domain. Characterization of this allele revealed reduced PtdIns(3,5)P2 production, altered vacuole morphology, and biosynthetic protein sorting defects. We also found that endocytosis of the plasma membrane protein Ste3 is partially blocked downstream of the internalization step, and that delivery of the dye FM4-64 to the vacuole is delayed in fab1 mutants. Additionally, Ste3 is not efficiently sorted into multivesicular body vesicles in fab1 mutants and instead localizes to the vacuolar limiting membrane. These data show that PtdIns(3,5)P2 is necessary for proper trafficking and sorting of endocytic cargo through the late endosome/multivesicular body.  相似文献   

16.
The sorting of most integral membrane proteins into the lumenal vesicles of multivesicular bodies (MVBs) is dependent on the attachment of ubiquitin (Ub) to their cytosolic domains. However, Ub is not required for sorting of Sna3, an MVB vesicle cargo protein in yeast. We show that Sna3 circumvents Ub-mediated recognition by interacting directly with Rsp5, an E3 Ub ligase that catalyzes monoubiquitination of MVB vesicle cargoes. The PPAY motif in the C-terminal cytosolic domain of Sna3 binds the WW domains in Rsp5, and Sna3 is polyubiquitinated as a consequence of this association. However, Ub does not appear to be required for transport of Sna3 via the MVB pathway because its sorting occurs under conditions in which its ubiquitination is impaired. Consistent with Ub-independent function of the MVB pathway, we show by electron microscopy that the formation of MVB vesicles does not require Rsp5 E3 ligase activity. However, cells expressing a catalytically disabled form of Rsp5 have a greater frequency of smaller MVB vesicles compared with the relatively broad distribution of vesicles seen in MVBs of wild-type cells, suggesting that the formation of MVB vesicles is influenced by Rsp5-mediated ubiquitination.  相似文献   

17.
Specificity and sensitivity in biochemical reactions can be achieved through regulation of equilibrium binding affinity or through proofreading mechanisms that allow for the dissociation of unwanted intermediates. In this essay, we aim to provide our perspectives on how the concept of kinetic proofreading might apply in the context of cargo sorting in clathrin-mediated endocytosis.  相似文献   

18.
The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.  相似文献   

19.
Cellular communication can be mediated by the exchange of biological information, mainly in the form of proteins and RNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are internalized by an acceptor cell. Exosomes bear specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Knowledge about loadings and processes and mechanisms of cargo sorting of exosomes is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. In this review, we will discuss the molecular mechanisms associated with exosome secretion and their specific cargo sorting, with special attention to the sorting of RNAs and proteins, and thus the outcome and the emerging therapeutic opportunities of the communication between the exosome-producer and recipient cells.  相似文献   

20.
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号