首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterivory by the rotifer Brachionus plicatilis Müller, nauplii and copepodites of the copepods Centropages Krøyer sp. and Acartia tonsa Dana, and the tintinnid Favella panamensis Kofoid & Campbell was examined using fluorescently labelled bacteria (FLB) and epifluorescence microscopy. FLB were < 1 μm in diameter, and were offered at environmental concentrations (1.47−9.08 × 106 cells·ml−1). FLB were visible within rotifers, nauplii, copepodites, and tintinnids, confirming ingestion. Rotifer clearance rates (32–418 μl·animal−1·h−1) exhibited no relation with FLB concentration. In some cases rates of clearance of FLB by rotifers were different with alternative phytoplankton food (Nanochloris Naumann sp.) than in replicates with FLB alone, whereas in other cases presence of alternative food exhibited no clear effects on rates of ingestion of FLB. Clearance rates for all six naupliar stages of A. tonsa nauplii (0–320 μl·animal−1·h−1) were stage-related, with higher rates by NIII-VI nauplii than NI-II nauplii. Nauplii had higher rates of clearance of FLB in the absence of alternative phytoplankton food (Isochrysis Parke sp.). Clearance rates of FLB by a single stage of Centropages sp. nauplii, A. tonsa CI copepodites and F. panamensis (each obtained at only a single food concentration of either 1.5 or 5.0 × 106 cells·ml−1) were within the range of 85–142 μl·animal−1·h−1. These ranges were similar to those of rotifers and A. tonsa nauplii. This is the first report of FLB ingestion by metazoan marine microzooplankton. Although rotifers and ciliates might be expected to ingest small particles such as FLB using ciliary induced feeding currents, the means by which nauplii and copepodites eat FLB is less clear. We propose that they may “eat” bacteria as they “drink” to osmoregulate.  相似文献   

2.
Nitrogen excreted as ammonium, urea, and dissolved primary amines (DPA), and nitrogen ingested by the planktonic calanoid copepod, Acartia tonsa, were measured while fed 4 foods with different N/C ratios in high (500 μg C l− 1) and low (50 μg C l− 1) concentrations. Adult copepods were fed the ciliate, Uronema marinum (N/C = 0.26), the diatom, Thalassiosira weissflogii, in log-phase growth (N/C = 0.20), and in senescent-phase growth (N/C = 0.12), and detritus derived from the saltmarsh grass, Spartina alterniflora, (N/C = 0.04). Total nitrogen excreted ranged from 0.06 to 0.18 μg N copepod− 1 d− 1 whereas nitrogen ingested exhibited considerably more variation (0.01 to 0.39 μg N copepod − 1d − 1). Ammonium was the dominant form of nitrogen excreted and was influenced by both food concentration and N/C ratio. Copepods fed foods with N/C ratios resembling their own body composition (log-phase diatoms and ciliates) excreted more ammonium when fed higher concentrations of food. In contrast, copepods fed foods with lower N/C ratios than their own body composition excreted more ammonium when fed lower concentrations of food, suggesting that they were catabolizing body protein for survival. Excretion of urea varied with food N/C ratio, with more urea excreted when the copepods were fed higher N/C foods. The excretion of DPA did not vary with either food concentration or food N/C ratio. Homeostasis serves to conserve the N/C ratio of copepods. Thus nitrogen excretion by healthy copepods should be expected to increase with ingestion only when copepods have high quantities of nitrogen-rich foods relative to the body composition of the copepods.  相似文献   

3.
Because of its novel bioactive properties the production of gymnodimine for use as a pharmaceutical precursor has aroused interest. The dinoflagellate, Karenia selliformis produces gymnodimine when grown in bulk culture using GP + selenium medium but the growth rates (μ) and levels of gymnodimine are low (μ, 0.05 days−1; gymnodimine 250 μg L−1 max). We describe the effects of organic acid additions (acetate, glycolate, alanine and glutamate additions and combinations of these) in enhancing growth and gymnodimine production in axenic cultures. The most effective organic acid combinations in decreasing order were: glycolate/alanine > acetate > glycolate. Glycolate/alanine optimised gymnodimine production by prolonging growth (maximum cell yield, 1.76 × 105 cells mL−1; gymnodimine, 1260 μg L−1; growth rate (μ), 0.2 days−1) compared to the control (growth maximum cell yield, 7.8 × 104 cells mL−1; gymnodimine, 780 μg L−1; μ, 0.17 days−1). Acetate enhanced gymnodimine by stimulating growth rate (μ, 0.23 days−1) and the large concentration of gymnodimine per cell (16 pg cell−1 cf. 9.8 pg cell−1 for the control) suggests a role for this compound in gymnodimine biosynthesis. Amending culture media with Mn2+ additions resulted in slightly decreased growth in control cultures and increased the gymnodimine while in glycolate/alanine cultures growth was stimulated but gymnodimine production decreased. The results suggest that the organic acid can enhance gymnodimine production by either enhancing growth maximum or the biosynthetic pathway.  相似文献   

4.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

5.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

6.
Pb2+ removal ability of the viable-freshwater cyanobacterium Gloeocapsa sp. was studied in batch experiments. Gloeocapsa sp. was cultured in the Medium 18 with pH adjusted to 3, 4, 5, 6 and 7. Growth was subsequently determined based on the increase of chlorophyll-a content. Gloeocapsa sp. was able to grow at all pH levels tested, except at pH 3. Removal of Pb2+ was then further studied under pH 4. The results showed that Pb2+ concentration in the range of 0–20 mg L−1 was not inhibitory to Gloeocapsa sp. growth but reduced its Pb2+ removal efficiency (by 4.5% when Pb2+ concentration increased from 2.5 to 20 mg L−1). Pb2+ removal characteristics followed the Langmuir adsorption isotherm with the maximum removal capacity (qmax) of 232.56 mg g−1. Adsorption of Pb2+ by this cyanobacterium followed the second order rate reaction and intraparticle diffusion was likely the rate-determining step. The initial rate of Pb2+adsorption during intraparticle diffusion was slower under light than under dark conditions, indicating that light probably slowed down the initial rate of intraparticle diffusion through the repulsion effects on cell membrane.  相似文献   

7.
Colonies of the seagrass Halophila ovalis are found growing adjacent to coral Acropora sp. and Seriatopora hystrix in a submarine hot spring (at 15.7 m depth, 28.6°C) at the north coast of Taketomi Island, near the southern tip of Japan. Halophila plants grow in sea water containing sulphide 930 μg S ml−1 and on the substratum with fine precipitates of the submarine hot spring which have sulphide content up to 5400 μg S g−1 DW. The accumulated sulphide concentration reaches as high as 8400 μg S g−1 DW in under ground tissues and 5700 μg S g−1 DW in above-ground tissues, respectively. It is suggested that, not the sulphide concentration but light and possibly water temperature are the limiting factors for the Halophila colonization in the submarine hot spring.  相似文献   

8.
The densities and biomass of ciliates inhabiting the water-sediment interface and the water column of an experimental ricefield were investigated throughout four annual cycles. Ciliate abundance and biomass were higher at the water-sediment interface than in the water column. In both sites, large ciliates (> 105μm3) contributed the higher biomass values, but the highest densities were found in the intermediate size class (104-105μm3). The prorodontid Coleps hirtus dominated the ciliate assemblage and usually comprised > 50% of total ciliate density. Blooms of C. hirtus , occurred in June in the water column and in July at the sediment surface. During the four cycles of rice cultivation, the average daily values for production of the entire ciliate community was 69.6 mgC/m2/d, and the net production efficiency (K2) was 72.0%. The estimated production values in the present study are high if compared to production measured for ciliates in other freshwater ecosystems.  相似文献   

9.
Four central Florida lakes were monitored for 3 years to determine the effects of macrophyte reduction and elimination by grass carp and herbicide on phytoplankton populations. Clear Lake, in which grass carp were stocked after a year of baseline studies, had all macrophytes eliminated within 14 months. The density of phytoplankton increased significantly from an initial 24-month mean of 165 000 cells 1−1 to a mean level of 787 900 cells 1−1 in the third year. In Little Lake Fairview, stocked with grass carp in both the first and third years of study, vegetation was not eliminated until the 34th month. Phytoplankton density increased significantly from a 24-month mean of 64 200 cells 1−1 to a mean of 370 200 cells 1−1 in the third year. Lake Orienta, stocked with grass carp in the first year, had all vegetation eliminated within 6 months. Phytoplankton abundance did not change significantly over the course of the study (mean: 2 700 000 cells 1−1). Lake Mann was treated with herbicide alone after an initial year of baseline data collection. Submerged vegetation was reduced in the second year but increased to near initial biomass levels in Year 3, with Nitella sp. replacing Hydrilla verticillata (L.f.) Royle as the dominant macrophyte. No significant yearly changes were noted in density of phytoplankton in this lake. Lake Orienta was the only lake in which the number of phytoplankton species collected differed significantly between years. Cyanophytes (notably species of Anacystis, Microcystis and Anabaena) and the diatom, Fragilaria sp., predominated in all lakes as macrophytes were removed. Most changes observed were in the direction of apparent increased trophic state. Major shifts in the phytoplankton assemblage (e.g., Shannon diversity indices and abundance) coincided with periods of maximal fluctuation in vegetation. Reversals of these tendencies were observed during prolonged stable periods of both high and low macrophute biomass.  相似文献   

10.
Hatching stage crab larvae will ingest algae, including non-toxic and toxic dinoflagellates. We determined that later zoeal stages, obtained from both laboratory-raised larvae and natural assemblages, also ingest dinoflagellates and we measured the effects of prey density, prior feeding history and time of exposure to prey on incidence of ingestion. Both stage 1 and later stage larvae exposed to algal prey were examined using epifluorescence for the presence of chl a. Both stage 1 and stage 3 laboratory-raised Cancer oregonensis (Dana) and Hemigrapsus nudus (Dana) ingested both the non-toxic dinoflagellate Prorocentrum micans Ehrenberg and the toxic Alexandrium andersoni Balech, with no difference between the stages. Both species showed higher ingestion of P. micans than A. andersoni. Ingestion of both prey types occurred at prey densities as low as 200 cell ml− 1 in C. oregonensis and 50 cells ml− 1 in H. nudus. Samples collected in summer, 2004, provided both stage 1 and late stage Lophopanopeus bellus (Stimpson); stage 1, intermediate, and late stage Fabia subquadrata Dana; and an unidentified porcellanid. Stage 1 L. bellus ingested both prey, while late stage zoeae did not, although the latter apparently were not actively feeding. F. subquadrata fed on both prey, with no difference between early and late larvae. Both stages ingested P. micans more readily than A. andersoni. First evidence of ingestion of P. micans at 600 cells ml− 1 occurred after only 0.5 h, while it took 2 h for ingestion at 50 cells ml− 1. The model of larval feeding involving both omnivory and prey discrimination described previously for the hatching stage is sustained throughout zoeal development and is, perhaps, an adaptation to an uncertain prey environment, one that trades opportunism for inefficiency.  相似文献   

11.
A genetically engineered Pichia pastoris FPHY34 strain containing a 1.3 kb thermostable phytase gene (fphy) evolved by DNA shuffling was constructed and screened. Expression and purification conditions for the recombinant phytase were developed in this study. The effect of Pi on recombinant phytase expression and cell growth of P. pastoris FPHY34 was tested in shake flask culture. Optimization of carbon sources for cell growth and methanol feeding strategies for phytase expression in P. pastoris FPHY34 was carried out in a 50-L fermenter by fed-batch fermentation. The purification of phytase was investigated by micro-filtration and ultra-filtration followed by desalting, ion-exchange chromatography, and gel filtration in the ÄKTA system. It showed that the optimum inorganic phosphorus is 13.6 g L−1 and that glucose can be used as a substrate for P. pastoris cell growth instead of glycerol; the biomass yield of glycerol (YX/S) is slightly higher than that of glucose. Different profiles of lag phase and respiratory quotient (RQ) displayed between glucose and glycerol as the sole carbon source. The maximum phytase activity in per millimetre reached 2508 U mL−1 at a methanol feed rate of 3.0 mL L−1 h−1 after 80 h period of induction. A purification factor of 41.1 with a 32% yield was achieved after chromatographic purification. The specific enzyme activity was 80 U mg−1 and 3281 U mg−1 in that supernatant fraction and after gel filtration purification, respectively. The strain P. pastoris FPHY34 showed a promising application in phytase industrial production.  相似文献   

12.
Combined effects of UVB radiation and CO2 concentration on plant reproductive parts have received little attention. We studied morphological and physiological responses of siliquas and seeds of canola (Brassica napus L. cv. 46A65) to UVB and CO2 under four controlled experimental conditions: UVB radiation (4.2 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1) (control); UVB radiation (4.2 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1); no UVB radiation (0 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1); and no UVB radiation (0 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1). UVB radiation affected the outer appearance of siliquas, such as colour, as well as their anatomical structures. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 reduced the size of seeds, which had different surface patterns than those from no UVB radiation. At both CO2 levels, 4.2 kJ m−2 d−1 of UVB decreased net CO2 assimilation (AN) and water use efficiency (WUE), but had no effect on transpiration (E). Elevated CO2 increased AN and WUE, but decreased E, under both UVB conditions. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 decreased chlorophyll fluorescence, total chlorophyll (Chl), Chl a and Chl b, but had no effect on the ratio of Chl a/b and the concentration of UV-screening pigments. Elevated CO2 increased total Chl and the concentration of UV-screening pigments under 4.2 kJ m−2 d−1 of UVB radiation. Neither UVB nor CO2 affected wax content of siliqua surface. Many significant relationships were found between the above-mentioned parameters. This study revealed that UVB radiation exerts an adverse effect on canola siliquas and seeds, and some of the detrimental effects of UVB on these reproductive parts can partially be mitigated by CO2.  相似文献   

13.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

14.
Continuous fermentations were performed in order to correlate the production of retamycin, an anthracycline antibiotic produced by Streptomyces olindensis in submerged cultures, with the dilution rate. Maximum retamycin production was achieved at a dilution rate of 0.05 h−1 (Dx=0.05 h−1), while higher dilution rates caused a decrease in antibiotic production, which ceased completely at a dilution rate of 0.30 h−1. Otherwise, biomass productivity was favoured by high dilution rates, achieving a maximum at D=0.25 h−1, whereas retamycin productivity reached a maximum at D=0.05 h−1. Dilution rate influenced morphology, which was assessed by image analysis. The percentage of clumps decreased with an increase in dilution rate, with a correspondent increase in pellet percentage.  相似文献   

15.
Andreas Hussner  Rainer Lsch 《Flora》2007,202(8):653-660
Floating Pennywort (Hydrocotyle ranunculoides L. fil.) is a worldwide distributed aquatic plant. The species is native to North America and quite common also in Central and South America. In Europe, Japan and Australia it is known as an alien plant, sometimes causing serious problems for affected ecosystems and human use of water bodies. Starting from Western Europe with an eastwards directed spread, Floating Pennywort was recorded in Germany in 2004 for the first time. Since then, the species spread out and got established in western parts of Central Europe. For a definite prediction of the potential of a further spread, data about biology, in particular growth and photosynthesis are needed. Here, regeneration capacity, growth at different nutrient availabilities and photosynthesis of H. ranunculoides were investigated. In addition biomass samples were taken in the field. Results show an enormous regeneration capacity (e.g., by forming new shoots from small shoot fragments), increasing growth rates under increasing nutrient availability and a maximum increase of biomass reaching 0.132±0.008 g g−1 dw d−1. Dense populations of H. ranunculoides growing in ponds and oxbows were found at high nutrient content of the substrate, the biomass reaching there up to 532.4±14.2 g dw m−2. Gas exchange analysis showed a physiological optimum of H. ranunculoides CO2 uptake at temperatures between 25 and 35 °C and high photon flux densities (PPFD) above 800 μmol photons m−2 s−1. In comparison, native Hydrocotyle vulgaris showed an optimum of net photosynthesis at 20–30 °C and a light saturation of CO2 gas exchange at 350 μmol photons m−2 s−1.  相似文献   

16.
Mustard (Brassica juncea L.) is characterized by large number of broad oblong shaped leaves in the lower layers. Our earlier studies have shown that removal of these shaded lower leaves on mustard plant axis enhanced growth, photosynthetic capacity and yield of the crop. We now present evidence that soil-applied nitrogen (N) at pre- or post-flowering stage following defoliation of lower leaves influences plant growth, photosynthesis and assimilation balance. Following defoliation at pre-flowering, i.e. 40 d after sowing (DAS) and N applied at the rate of 100 kg ha−1 at the time of sowing and 50 kg ha−1 at post-flowering (60 DAS) enhanced the characteristics maximally. The defoliation treatment together with N combinations and the time of its application, N at 150 kg ha−1 applied as single dose at the time of sowing or N applied in split; 100 kg ha−1 at the time of sowing and 50 kg ha−1 at 40 DAS or 75 kg ha−1 at the time of sowing or 75 kg ha−1 at pre- or post-flowering time proved less effective. The plants which were not defoliated and received 75 kg N ha−1 at the time of sowing and 75 kg ha−1 at 60 DAS showed lowest values. Furthermore, N assimilation was more efficient in plants following defoliation at 40 DAS. The results suggest that split N application (100 kg ha−1 at sowing and 50 kg ha−1 at post-flowering) enhances substantially growth, photosynthesis, N assimilation and yield of mustard following defoliation. This management practice could be adopted in mustard culture for increasing seed yield together with minimizing N loss.  相似文献   

17.
When cultivated in Murashige & Skoog medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxy acetic acid and 0.5 mg l−1 6-benzyladenine, Perilla frutescens cells in suspension culture grew rapidly reaching about 13.6 g dry wt l−1 after 12 days. The cell line produced both anthocyanin 0.9 g l−1 and triterpenoids: 16 mg l−1 oleanolic acid (OA), 25 mg l−1 ursolic acid (UA) and 14 mg l−1 tormentic acid (TA). When P. frutescens cells of 7-day-old cultures were exposed to a yeast elicitor at 0.5–5% (v/v) for 7 days, it was found that anthocyanin content peaked at 10.2% of dry weight with yeast elicitor at 1% (v/v) whereas the maximum production of oleanolic acid and ursolic acid in cultures treated with 2% (v/v) yeast elicitor was 19 and 27 mg l−1, a 46 and 24% increase over the control, respectively. This is the first report of simultaneous production of both anthocyanin and triterpenoids in a single culture system.  相似文献   

18.
This work reports on the design of a complex medium based on simple and complex carbon sources, i.e. glucose, sucrose, molasses, and defatted-soybean, and simple and complex nitrogen sources, i.e. (NH4)2HPO4, casein, and defatted-soybean, for serine alkaline protease (SAP) production by recombinant Bacillus subtilis carrying pHV1431::subC gene. SAP activity was obtained as 3050 U cm−3 with the initial defatted-soybean concentration Csoybeano=20 kg m−3 and initial glucose concentration CGo=8 kg m−3; whereas, addition of the inorganic nitrogen source (NH4)2HPO4 decreased SAP production considerably. Further increase in SAP production (3850 U cm−3) was obtained when sucrose was replaced with glucose at Csucroseo=15 kg m−3 and Csoybeano=20 kg m−3. Nevertheless, when molasses was replaced with sucrose, the maximum activity was obtained with molasses having 10 kg m−3 initial sucrose concentration and Csoybeano=15 kg m−3as 2130 U cm−3; moreover, when casein was replaced with defatted-soybean SAP production decreased considerably (ca. 250 U cm−3). Thereafter, the effects of inorganic ionic compounds were investigated; and except phosphate, inorganic compounds supplied from defatted-soybean were found to be sufficient for the bioprocess. The highest SAP activity was obtained as 5350 U cm−3 in the medium that contained (kg m−3): Csoybeano=20, Csucroseo=15, CNa2HPO4o=0.021, and CNaH2PO4o=2.82, that was 6.5-fold higher than that of the SAP produced in the defined medium. By using the designed complex medium, oxygen transfer characteristics of the bioprocess were investigated; and, Damköhler number that is the oxygen transfer limitation increases with the cultivation time until t=14 h; and, at t>20 h both mass transfer and biochemical reaction resistances were effective. Overall oxygen transfer coefficient varied between 0.010 and 0.044 s−1; volumetric oxygen uptake rate varied between 0.001 and 0.006 mol m−3 s−1; and specific oxygen uptake rate varied between 0.0001 and 0.0022 mol kg−1 DW s−1 throughout the bioprocess.  相似文献   

19.
Dry biomass of Spirulina platensis re-hydrated for 48 h was employed as a biosorbent in tests of cadmium(II) removal from water. Various concentrations of biomass (from 1 to 4 g l−1) and metal (from 100 to 800 mg l−1) were tested. Low biomass levels (Xo  2 g l−1) ensured metal removal up to 98% only at Cd0= 100 and 200 mg l−1, while Xo  2.0 g l−1 were needed at Cd0 = 400 mg l−1 to achieve satisfactory results. Whereas Xo = 4.0 g l−1 was effective to remove up to Cd0 = 500 mg l−1, a further increase in metal concentration (Cd0 = 600 and 800 mg l−1) led to progressive worsening of the system performance. At a given biomass levels, the kinetics of the process was better at low Cd2+ concentrations, while, raising the adsorbent level from 1.0 to 2.0 g l−1 and then to 4.0 g l−1, the rate constant of biosorption increased by about one order of magnitude in both cases and the adsorption capacity of the system progressively decreased from 357 to 149 mg g−1.  相似文献   

20.
The potential for nutrient load (30, 100 and 350 g N m−2 per year) to alter plant performance under saline conditions (control, 4.5, 9 and 13 dS m−1) was examined in the sedge Bolboschoenus medianus. Relative growth rates (RGR) across nutrient loadings ranged from 30.2 to 41.8 mg g−1 per day in controls and were reduced to 20.9–28.5 mg g−1 per day by salinities of 13 dS m−1. Whilst higher nutrient loads generally increased RGR, the response was smaller at higher salinities. Responses to salinity and nutrient load were specific. Nutrient load increased the RGR via increases in the leaf area ratio (LAR). The LAR ranged from 1.9 to 2.1 m2 kg−1 across salinity treatments at 30 g N m−2 per year, and increased to 2.5–2.8 m2 kg−1 at 350 g N m−2 per year. Salinity reduced the RGR via a reduction in the net assimilation rate (NAR). The NAR in control plants ranged from 14.7 to 16 g m−2 per day across nutrient loadings and decreased to 11–12 g m−2 per day at 13 dS m−1. Carbon isotope discrimination of leaves decreased by 2–3‰ in response to 13 dS m−1 at the lower nutrient loadings. A prominent response of B. medianus to salinity was a change in biomass allocation from culms to tubers. In contrast, the response to nutrient load was characterised by a shift in biomass allocation from roots to leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号