首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transforming Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) activates signalling on the NF-κB axis through two distinct domains in its cytoplasmic C terminus, namely, CTAR1 (amino acids [aa] 187 to 231) and CTAR2 (aa 351 to 386). The ability of CTAR1 to activate NF-κB appears to be attributable to the direct interaction of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), while recent work indicates that CTAR2-induced NF-κB is mediated through its association with TNF receptor-associated death domain (TRADD). LMP1 expression also results in activation of the c-Jun N-terminal kinase (JNK) (also known as stress-activated protein kinase) cascade, an effect which is mediated exclusively through CTAR2 and can be dissociated from NF-κB induction. The organization and signalling components involved in LMP1-induced JNK activation are not known. In this study we have dissected the extreme C terminus of LMP1 and have identified the last 8 aa of the protein (aa 378 to 386) as being important for JNK signalling. Using a series of fine mutants in which single amino acids between codons 379 and 386 were changed to glycine, we have found that mutations of Pro379, Glu381, Ser383, or Tyr384 diminish the ability of LMP1 CTAR2 to engage JNK signalling. Interestingly, this region was also found to be essential for CTAR2-mediated NF-κB induction and coincides with the LMP1 amino acid sequences shown to bind TRADD. Furthermore, we have found that LMP1-mediated JNK activation is synergistically augmented by low levels of TRADD expression, suggesting that this adapter protein is critical for LMP1 signalling. TRAF2 is known to associate with TRADD, and expression of a dominant-negative N-terminal deletion TRAF2 mutant was found to partially inhibit LMP1-induced JNK activation in 293 cells. In addition, the TRAF2-interacting protein A20 blocked both LMP1-induced JNK and NF-κB activation, further implicating TRAF2 in these phenomena. While expression of a kinase-inactive mutated NF-κB-inducing kinase (NIK), a mitogen-activated protein kinase kinase kinase which also associates with TRAF2, impaired LMP1 signalling on the NF-κB axis, it did not inhibit LMP1-induced JNK activation, suggesting that these two pathways may bifurcate at the level of TRAF2. These data further define a role for TRADD and TRAF2 in JNK activation and confirm that LMP1 utilizes signalling mechanisms used by the TNF receptor/CD40 family to elicit its pleiotropic activities.  相似文献   

2.
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival.  相似文献   

3.
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.  相似文献   

4.
CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques.  相似文献   

5.
6.
Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.  相似文献   

7.
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation.  相似文献   

8.
9.
Toll-like receptor (TLR) signaling is triggered by pathogen-associated molecular patterns that mediate well established cytokine-driven pathways, activating NF-κB together with IRF3/IRF7. In addition, TLR3 drives caspase 8-regulated programmed cell death pathways reminiscent of TNF family death receptor signaling. We find that inhibition or elimination of caspase 8 during stimulation of TLR2, TLR3, TLR4, TLR5, or TLR9 results in receptor interacting protein (RIP) 3 kinase-dependent programmed necrosis that occurs through either TIR domain-containing adapter-inducing interferon-β (TRIF) or MyD88 signal transduction. TLR3 or TLR4 directly activates programmed necrosis through a RIP homotypic interaction motif-dependent association of TRIF with RIP3 kinase (also called RIPK3). In fibroblasts, this pathway proceeds independent of RIP1 or its kinase activity, but it remains dependent on mixed lineage kinase domain-like protein (MLKL) downstream of RIP3 kinase. Here, we describe two small molecule RIP3 kinase inhibitors and employ them to demonstrate the common requirement for RIP3 kinase in programmed necrosis induced by RIP1-RIP3, DAI-RIP3, and TRIF-RIP3 complexes. Cell fate decisions following TLR signaling parallel death receptor signaling and rely on caspase 8 to suppress RIP3-dependent programmed necrosis whether initiated directly by a TRIF-RIP3-MLKL pathway or indirectly via TNF activation and the RIP1-RIP3-MLKL necroptosis pathway.  相似文献   

10.
Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97.  相似文献   

11.
CpG-ODN stimulates dendritic cells (DCs) to produce cytokines, which are important for pathogenesis of autoimmune disorders and vaccine strategy for cancer. CpG-ODN activates the TLR9/MyD88/TRAF6 cascade leading to activation of IKK-NF-κB and JNK, which are critical for production of pro-inflammatory cytokines. However, whether other molecules are involved in activation of CpG-ODN signaling is still not clear. Here we report that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is involved in this activation process. DNA-PKcs-deficient DCs exhibited a defect in the IL-6 and IL-12 response to CpG-ODN in a dose- and time- dependent manner. Loss of DNA-PKcs impaired phosphorylation of IKK, IκBα, NF-κB and JNK in response to CpG-ODN. Interestingly, CpG-ODN was able to bind DNA-PKcs and induce its association and co-localization with TRAF6 in the absence of TLR9. Our data suggest that DNA-PKcs is a player in CpG-ODN signaling and may explain why DNA-PKcs is implicated in the pathogenic process of autoimmune disease.  相似文献   

12.
13.

Background

In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.

Principal Findings

Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.

Conclusions/Significance

Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.  相似文献   

14.
Devin A  Lin Y  Liu ZG 《EMBO reports》2003,4(6):623-627
The death-domain kinase RIP (receptor-interacting protein) is an important effector of tumour necrosis factor (TNF) signalling and is essential for TNF-induced nuclear factor-κB activation. However, the function of RIP in the TNF-induced activation of mitogen-activated protein kinases (MAPKs) has not been fully investigated. In this report, using Rip null (Rip−/−) mouse fibroblast cells, we investigated whether RIP is required for TNF-induced activation of the MAPKs extracellular-signal-related kinase (ERK), p38 and c-Jun amino-terminal kinase (JNK). We found that TNF-induced activation of ERK, p38 and JNK is decreased in Rip−/− cells. The activation of these kinases by interleukin-1 is normal in Rip−/− cells. More importantly, we showed that the kinase activity of RIP is needed for ERK activation.  相似文献   

15.
16.
Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo.  相似文献   

17.
NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella''s type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation.  相似文献   

18.
The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys63-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.  相似文献   

19.
The activation of NF-κB by T-cell receptor (TCR) signaling is critical for T-cell activation during the adaptive immune response. CARD11 is a multidomain adapter that is required for TCR signaling to the IκB kinase (IKK) complex. During TCR signaling, the region in CARD11 between the coiled-coil and PDZ domains is phosphorylated by protein kinase Cθ (PKCθ) in a required step in NF-κB activation. In this report, we demonstrate that this region functions as an inhibitory domain (ID) that controls the association of CARD11 with multiple signaling cofactors, including Bcl10, TRAF6, TAK1, IKKγ, and caspase-8, through an interaction that requires both the caspase recruitment domain (CARD) and the coiled-coil domain. Consistent with the ID-mediated control of their association, we demonstrate that TRAF6 and caspase-8 associate with CARD11 in T cells in a signal-inducible manner. Using an RNA interference rescue assay, we demonstrate that the CARD, linker 1, coiled-coil, linker 3, SH3, linker 4, and GUK domains are each required for TCR signaling to NF-κB downstream of ID neutralization. Requirements for the CARD, linker 1, and coiled-coil domains in signaling are consistent with their roles in the association of CARD11 with Bcl10, TRAF6, TAK1, caspase-8, and IKKγ. Using Bcl10- and MALT1-deficient cells, we show that CARD11 can recruit signaling cofactors independently of one another in a signal-inducible manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号