首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.  相似文献   

2.
The regulation of synthesis of valyl-, leucyl-, and isoleucyl-transfer ribonucleic acid (tRNA) synthetases was examined in strains of Escherichia coli and Salmonella typhimurium. When valine and isoleucine were limiting growth, the rate of formation of valyl-tRNA synthetase was derepressed about sixfold; addition of these amino acids caused repression of synthesis of this enzyme. The rate of synthesis of the isoleucyl- and leucyl-tRNA synthetases was derepressed only during growth restriction by the cognate amino acid. Restoration of the respective amino acid to these derepressed cultures caused repression of synthesis of the aminoacyl-tRNA synthetase, despite the resumption of the wild-type growth rate.  相似文献   

3.
Tang Y  Tirrell DA 《Biochemistry》2002,41(34):10635-10645
The fidelity of translation is dependent on the specificity of the aminoacyl-tRNA synthetases (aaRSs). The aaRSs that activate the hydrophobic amino acids leucine, isoleucine, and valine employ a proofreading mechanism that hydrolyzes noncognate aminoacyl adenylates and misaminoacylated tRNAs. Discrimination between structurally similar amino acids by these AARSs is believed to operate by a double-sieve principle, wherein a separate editing domain governs hydrolysis on the basis of the size and hydrophilicity of the amino acid side chain. Leucyl-tRNA synthetase (LeuRS) relies on its editing function to correct misaminoacylation of tRNA(Leu) by isoleucine and methionine. Thr252 of Escherichia coli LeuRS has been shown previously to be important in defining the size of the editing cavity. Here we report the isolation and characterization of three LeuRS mutants with point mutations at this position (T252Y, T252L, and T252F). The proofreading activity of the synthetase is significantly impaired when an amino acid bulkier than threonine is introduced. The rate of misaminoacylation of tRNA(Leu) by isoleucine and valine increases with the increasing size of the amino acid substituent at position 252, and the noncognate amino acids norvaline and norleucine are inserted efficiently at the leucine sites of recombinant proteins under conditions of constitutive overexpression of the T252Y mutant in E. coli. In addition, the unsaturated amino acids allylglycine, homoallylglycine, homopropargylglycine, and 2-butynylalanine all support protein synthesis in E. coli hosts harboring the mutant synthetase. These results demonstrate that programmed manipulation of the editing cavity can allow in vivo incorporation of novel protein building blocks.  相似文献   

4.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

5.
K D Tardif  M Liu  O Vitseva  Y M Hou  J Horowitz 《Biochemistry》2001,40(27):8118-8125
Valyl-tRNA synthetase (ValRS) has difficulty discriminating between its cognate amino acid, valine, and structurally similar amino acids. To minimize translational errors, the enzyme catalyzes a tRNA-dependent editing reaction that prevents accumulation of misacylated tRNA(Val). Editing occurs with threonine, alanine, serine, and cysteine, as well as with several nonprotein amino acids. The 3'-end of tRNA plays a vital role in promoting the tRNA-dependent editing reaction. Valine tRNA having the universally conserved 3'-terminal adenosine replaced by any other nucleoside does not stimulate the editing activity of ValRS. As a result 3'-end tRNA(Val) mutants, particularly those with 3'-terminal pyrimidines, are stably misacylated with threonine, alanine, serine, and cysteine. Valyl-tRNA synthetase is unable to hydrolytically deacylate misacylated tRNA(Val) terminating in 3'-pyrimidines but does deacylate mischarged tRNA(Val) terminating in adenosine or guanosine. Evidently, a purine at position 76 of tRNA(Val) is essential for translational editing by ValRS. We also observe misacylation of wild-type and 3'-end mutants of tRNA(Val) with isoleucine. Valyl-tRNA synthetase does not edit wild-type tRNA(Val)(A76) mischarged with isoleucine, presumably because isoleucine is only poorly accommodated at the editing site of the enzyme. Misacylated mutant tRNAs as well as 3'-end-truncated tRNA(Val) are mixed noncompetitive inhibitors of the aminoacylation reaction, suggesting that ValRS, a monomeric enzyme, may bind more than one tRNA(Val) molecule. Gel-mobility-shift experiments to characterize the interaction of tRNA(Val) with the enzyme provide evidence for two tRNA binding sites on ValRS.  相似文献   

6.
7.
Quinoxaline antibiotics are chromopeptide lactones embracing the two families of triostins and quinomycins, each having characteristic sulfur-containing cross-bridges. Interest in these compounds stems from their antineoplastic activities and their specific binding to DNA via bifunctional intercalation of the twin chromophores represented by quinoxaline-2-carboxylic acid (QA). Enzymatic analysis of triostin A-producing Streptomyces triostinicus and quinomycin A-producing Streptomyces echinatus revealed four nonribosomal peptide synthetase modules for the assembly of the quinoxalinoyl tetrapeptide backbone of the quinoxaline antibiotics. The modules were contained in three protein fractions, referred to as triostin synthetases (TrsII, III, and IV). TrsII is a 245-kDa bimodular nonribosomal peptide synthetase activating as thioesters for both serine and alanine, the first two amino acids of the quinoxalinoyl tetrapeptide chain. TrsIII, represented by a protein of 250 kDa, activates cysteine as a thioester. TrsIV, an unstable protein of apparent Mr about 280,000, was identified by its ability to activate and N-methylate valine, the last amino acid. QA, the chromophore, was shown to be recruited by a free-standing adenylation domain, TrsI, in conjunction with a QA-binding protein, AcpPSE. Cloning of the gene for the QA-binding protein revealed that it is the fatty acyl carrier protein, AcpPSE, of the fatty acid synthase of S. echinatus and S. triostinicus. Analysis of the acylation reaction of AcpPSE by TrsI along with other A-domains and the aroyl carrier protein AcmACP from actinomycin biosynthesis revealed a specific requirement for AcpPSE in the activation and also in the condensation of QA with serine in the initiation step of QA tetrapeptide assembly on TrsII. These data show for the first time a functional interaction between nonribosomal peptide synthesis and fatty acid synthesis.  相似文献   

8.
Summary Aminoacyl tRNA synthetases discriminate between tRNA species by a highly specific mechanism. Physical and chemical studies indicate that the synthetases bind along and around the inside of the three-dimensional L-shaped tRNA structure. Studies of mutant tRNAs that affect synthetase interaction tend to confirm this conclusion. However, in contrast to proteins that recognize a specific block of contiguous nucleotide units (e.g., repressors, restriction enzymes, etc.), synthetases appear to interact with spatially disperse elements of the structure. Available evidence suggests that tRNA binding clefts on various synthetases may be roughly similar, with specificity being achieved by the choice of amino acid residues in a few critical positions in the tRNA binding clefts. With this idea in mind, it should be possible to introduce amino acid substitutions into the binding clefts and thereby change tRNA recognition specificity. This has been attempted (by genetic manipulations) and a mutant alanine tRNA synthetase with altered tRNA recognition has been isolated. This enzyme can attach alanine to isoleucine specific tRNA. When presented with valine specific tRNA, a tRNA similar in some structural features to the isoleucine specific tRNA, or with the structurally quite different tyrosine specific tRNA, no significant aminoacylation occurs. Thus, a precise specificity alteration can occur through mutation; this result supports the idea of similarities in synthetase binding clefts, with specificity being achieved by the positioning of amino acids at critical positions in these clefts. Finally, further data have been obtained on the issue of possible transient covalent bond formation between synthetases and tRNAs, as a critical part of the interaction.Abbreviations tRNAx a tRNA specific for the amino acid - x where x is given the standard 3 letter abbreviation  相似文献   

9.
Misactivation of amino acids by aminoacyl-tRNA synthetases can lead to significant errors in protein synthesis that are prevented by editing reactions. As an example, discrete sites in isoleucyl-tRNA synthetase for amino acid activation and editing are about 25 A apart. The details of how misactivated valine is translocated from one site to the other are unknown. Here, we present a kinetic study in which a fluorescent probe is used to monitor translocation of misactivated valine from the active site to the editing site. Isoleucine-specific tRNA, and not other tRNAs, is essential for translocation of misactivated valine. Misactivation and translocation occur on the same enzyme molecule, with translocation being rate limiting for editing. These results illustrate a remarkable capacity for a specific tRNA to enhance amino acid fine structure recognition by triggering a unimolecular translocation event.  相似文献   

10.
Zhai Y  Martinis SA 《Biochemistry》2005,44(47):15437-15443
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have employed an editing mechanism to ensure fidelity in this first step of protein synthesis. The amino acid editing active site for Escherichia coli leucyl-tRNA synthetase resides within the CP1 domain that folds discretely from the main body of the enzyme. A portion of the editing active site is lined with conserved threonines. Previously, we identified one of these threonine residues (Thr(252)) as a critical amino acid specificity factor. On the basis of X-ray crystal structure information, two other nearby threonine residues (Thr(247) and Thr(248)) were hypothesized to interact with the editing substrate near its cleavage site. Single mutations of either of these conserved threonine residues had minimal effects on amino acid editing. However, double mutations that deleted the hydroxyl group from the neighboring threonine residues abolished amino acid editing activity. We propose that these threonine residues, which are also conserved in the homologous isoleucyl-tRNA synthetase and valyl-tRNA synthetase editing active sites, play a central role in amino acid editing. It is possible that they collaborate in stabilizing the transition state.  相似文献   

11.
All living organisms conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from a gene to protein product. One crucial 'quality control' point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. When differences in binding energies of amino acids to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of enzyme selectivity. Some incorrect amino acids are edited at the active site before the transfer to tRNA (pre-transfer editing), while others are edited after transfer to tRNA at a separate editing site (post-transfer editing). Access of natural non-protein amino acids, such as homocysteine, homoserine, or ornithine to the genetic code is prevented by the editing function of aminoacyl-tRNA synthetases. Disabling editing function leads to tRNA mischarging errors and incorporation of incorrect amino acids into protein, which is detrimental to cell homeostasis and inhibits growth. Continuous homocysteine editing by methionyl-tRNA synthetase, resulting in the synthesis of homocysteine thiolactone, is part of the process of tRNA aminoacylation in living organisms, from bacteria to man. Excessive homocysteine thiolactone synthesis in hyperhomocysteinemia caused by genetic or nutritional deficiencies is linked to human vascular and neurological diseases.  相似文献   

12.
从不同年龄(20天,30天,1年)的小白鼠全脑制得细胞质混合氨酰tRNA合成酶。用异源体系(即用酵母tRNA和小白鼠全脑氨酰tRNA合成酶)测定了氨酰tRNA合成酶分别载运~3H标记的Asp、Gly、Glu、Lys和Ala的活力。结果表明除未检出tRNA~(Glu)的合成酶活力外,对其余四种氨基酸都有明显的活力,特别是年龄20天小白鼠的氨酰tRNA合成酶对~3H-Gly具有高达35%的载运活力。对~3H-Gly、~3H-Lys和~3H-Ala的载运活力有随增龄而下降的趋势,但对~3H-Asp的载运活力则随年龄增长而增高。  相似文献   

13.
Two enzymes were purified from actinomycin-synthesizing Streptomyces chrysomallus which could be identified as peptide synthetases involved in the biosynthesis of actinomycin. Actinomycin synthetase II activates the first two amino acids of the peptide chains of the peptide lactone antibiotic, threonine and valine (or isoleucine), as thioesters via their corresponding adenylates. It is a single polypeptide chain of Mr 225,000. Similarly, actinomycin synthetase III activates proline, glycine, and valine (the remaining three amino acids in the antibiotic) as thioesters and is a single polypeptide chain of about Mr 280,000. It also carries the methyltransferase function(s) for N-methylation of thioesterified glycine and valine. In addition, it catalyzes the formation of cyclo(sarcosyl-N-methyl-L-valine) from glycine, L-valine, and S-adenosyl-L-methionine at the expense of ATP. Although the cell-free synthesis of the peptide lactone was not as yet accomplished, the data provide evidence that together with the 4-methyl-3-hydroxyanthranilic acid-activating enzyme (now designated as actinomycin synthetase I) all amino acid-activating protein components of the actinomycin-synthesizing enzyme complex are identified.  相似文献   

14.
A high molecular weight complex containing aminoacyl-tRNA synthetases, peptidyl acetyltransferase, lipids and tRNA has been isolated from the 250,000 x g postmitochondrial supernatant from rat liver cells. Aminoacyl-tRNA synthetase activity directed towards arginine, aspartate, glutamine, glutamate, glycine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, and tyrosine is present. An endogenous pool of aminoacyladenylates is indicated by an ATP-32PPi exchange catalyzed by the native complex, which shows a dramatic increase after addition of ATP. Lysine is the only amino acid which greatly increases the exchange rate catalyzed by the native complex in vitro, whereas components of the denatured complex activate all the 13 amino acids in the presence of ATP. Six of the eight lipid fractions were glycolipids; cholesterol and cholesterol esters were absent. The extracted RNA has many characteristics of tRNA. These findings provide evidence for the organization of aminoacyl-tRNA synthetases in a complex with peptidyl acetyltransferase that also contains lipids and tRNA and that can be readily isolated from the cytosol of rat liver cells.  相似文献   

15.
Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes of an active truncated form of the enzyme with a threonyl adenylate analog or threonine. The zinc ion is directly involved in threonine recognition, forming a pentacoordinate intermediate with both the amino group and the side chain hydroxyl. Amino acid activation experiments reveal that the enzyme shows no activation of isosteric valine, and activates serine at a rate 1,000-fold less than that of cognate threonine. This study demonstrates that the zinc ion is neither strictly catalytic nor structural and suggests how the zinc ion ensures that only amino acids that possess a hydroxyl group attached to the beta-position are activated.  相似文献   

16.
The kinetics of derepression of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined during valine-, isoleucine-, and leucine-limited growth. When valine was limiting growth, valyl-tRNA synthetase formation was maximally derepressed within 5 min, whereas the rates of synthesis of isoleucyl-, and leucyl-tRNA synthetases were unchanged. Isoleucine-restricted growth caused a maximal derepression of isoleucyl-tRNA synthetase formation in 5 min and derepression of valyl-tRNA synthetase formation in 15 min with no effect on leucyl-tRNA synthetase formation. When leucine was limiting growth, leucyl-tRNA synthetase formation was immediately derepressed, whereas valyl- and isoleucyl-tRNA synthetase formation was unaffected by manipulation of the leucine supply to the cells. These results support our previous findings that valyl-tRNA synthetase formation is subject to multivalent repression control by both isoleucine and valine. In contrast, repression control of iso-leucyl- and leucyl-tRNA synthetase formation is specifically mediated by the supply of the cognate amino acid.  相似文献   

17.
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain.  相似文献   

18.
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.  相似文献   

19.
Temperature-sensitive mutations in the isoleucyl-transfer ribonucleic acid (tRNA) synthetase of yeast, ilS(-)1-1 and ilS(-)1-2, were used to examine the role of aminoacyl-tRNA synthetase enzymes in the regulation of ribonucleic acid (RNA) synthesis and enzyme synthesis in a eucaryotic organism. At the permissive temperature, 70 to 100% of the intracellular isoleucyl-tRNA was charged in mutants carrying these mutations; at growth-limiting temperatures, less than 10% was charged with isoleucine. Other aminoacyl-tRNA molecules remained essentially fully charged under both conditions. Net protein and RNA syntheses were rapidly inhibited when the mutant was shifted from the permissive to the restrictive temperature. Most of the ribosomes remained in polyribosome structures at the restrictive temperature even though protein synthesis was strongly inhibited. Two of the enzymes of isoleucine biosynthesis, threonine deaminase and acetohydroxyacid synthetase, were derepressed about twofold during slow growth of the mutants at a growth-limiting temperature. This is about the same degree of derepression that is achieved by growth of an auxotroph on limiting isoleucine. We conclude that charged aminoacyl-tRNA is essential for RNA synthesis and for the multivalent repression of the isoleucine biosynthetic enzymes. Aminoacyl tRNA synthetase enzymes appear to play important regulatory roles in the cell physiology of eucaryotic organisms.  相似文献   

20.
The fidelity of protein synthesis requires efficient discrimination of amino acid substrates by aminoacyl-tRNA synthetases. Accurate discrimination of the structurally similar amino acids, valine and isoleucine, by isoleucyl-tRNA synthetase (IleRS) results, in part, from a hydrolytic editing reaction, which prevents misactivated valine from being stably joined to tRNAIle. The editing reaction is dependent on the presence of tRNAIle, which contains discrete D-loop nucleotides that are necessary to promote editing of misactivated valine. RNA minihelices comprised of just the acceptor-TPsiC helix of tRNAIle are substrates for specific aminoacylation by IleRS. These substrates lack the aforementioned D-loop nucleotides. Because minihelices contain determinants for aminoacylation, we thought that they might also play a role in editing that has not previously been recognized. Here we show that, in contrast to tRNAIle, minihelixIle is unable to trigger the hydrolysis of misactivated valine and, in fact, is mischarged with valine. In addition, mutations in minihelixIle that enhance or suppress charging with isoleucine do the same with valine. Thus, minihelixIle contains signals for charging (by IleRS) that are independent of the amino acid and, by itself, minihelixIle provides no determinants for editing. An RNA hairpin that mimics the D-stem/loop of tRNAIle is also unable to induce the hydrolysis of misactivated valine, both by itself and in combination with minihelixIle. Thus, the native tertiary fold of tRNAIle is required to promote efficient editing. Considering that the minihelix is thought to be the more ancestral part of the tRNA structure, these results are consistent with the idea that, during the development of the genetic code, RNA determinants for editing were added after the establishment of an aminoacylation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号