首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extragenic suppressors of +1 frameshift mutations in proline codons map in genes encoding two major proline tRNA isoacceptors. We have shown previously that one isoacceptor encoded by the SUF2 gene (chromosome 3) contains no intervening sequence. SUF2 suppressor mutations result from the base insertion of a G within a 3'-GGA-5' anticodon, allowing the tRNA to read a 4-base code word. In this communication we describe suppressor mutations in genes encoding a second proline tRNA isoacceptor (wild-type anticodon 3'-GGU-5') that result in a novel mechanism for translation of a 4-base genetic code word. The genes that encode this isoacceptor include SUF7 (chromosome 13), SUF8 (chromosome 8), trn1 (chromosome 1), and at least two additional unmapped genes, all of which contain an intervening sequence. We show that suppressor mutations in the SUF7 and SUF8 genes result in G-to-U base substitutions at position 39 that disrupted the normal G . C base pairing in the last base pair of the anticodon stem adjacent to the anticodon loop. These anticodon stem mutations might alter the size of the anticodon loop and permit the use of a 3'-GGGU-5' sequence within the loop to read 4-base proline codons. Uncertainty regarding the exact structure of the mature suppressor tRNAs results from the possibility that anticodon stem mutations might affect sites of intervening sequence removal. The possible role of the intervening sequence in the generation of mature suppressor tRNA is discussed. Besides an analysis of suppressor tRNA genes, we have extended previous observations of the apparent relationship between tRNA genes and repetitive delta sequences found as solo elements or in association with the transposable element TY1. Hybridization studies and a computer analysis of the DNA sequence surrounding the SUF7 gene revealed two incomplete, inverted delta sequences that form a stem and loop structure located 165 base pairs from the 5' end of the tRNA gene. In addition, sequences beginning 164 base pairs from the 5' end of the trn1 gene also exhibit partial homology to delta. These observations provide further evidence for a nonrandom association between tRNA genes and delta sequences.  相似文献   

2.
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.  相似文献   

3.
A genetic approach has been used to establish the molecular basis of 4-base codon recognition by frameshift suppressor tRNA containing an extra nucleotide in the anticodon. We have isolated all possible base substitution mutations at the position 4 (N) in the 3'-CCCN-5' anticodon of a Saccharomyces cerevisiae frameshift suppressor glycine tRNA encoded by the SUF16 gene. Base substitutions at +1 frameshift sites in the his4 gene have also been obtained such that all possible 4-base 5'-GGGN-3' codons have been identified. By testing for suppression in different strains that collectively represent all 16 possible combinations of position 4 nucleotides, we show that frameshift suppression does not require position 4 base pairing. Nonetheless, position 4 interactions influence the efficiency of suppression. Our results suggest a model in which 4-base translocation of mRNA on the ribosome is directed primarily by the number of nucleotides in the anticodon loop, whereas the resulting efficiency of suppression is dependent on the nature of position 4 nucleotides.  相似文献   

4.
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.  相似文献   

5.
The mutant tRNA(2Arg) encoded by the genetically-selected frameshift suppressor, sufT621, inserts arginine and causes a +1 reading-frame shift at the proline codon, CCG(U). There is an extra base, G36.1, in argV beta, one of the four identical genes for tRNA(2Arg) in the position between bases 36 and 37, corresponding to the 3' side of the anticodon. The new four-base anticodon, predicted from DNA sequencing to be 3' GGCA 5', is complementary to the four-base codon CCGU. Quadruplet translocation promoted by mutant argV does not require perfect complementarity between the codon and the anticodon since synthetic genes encoding derivatives of tRNA(2Arg) and tRNA(1Pro), with four-base anticodons complementary to three out of the four bases of CCGU, were also shown to be capable of frameshifting. Two other mutants of argV, inferred to have normal-size, seven-base anticodon loops, were also found to be capable of four-base-decoding demonstrating that quadruplet translocation promoted by mutant argV does not require an enlarged anticodon loop. Other alleles of argV, predicted to have nine bases in the anticodon loop, were also found to cause frameshifting. The DNA sequence of two of these showed in addition, either a deletion of G24, or a ten-base duplication in the region corresponding to the TFC arm. A general finding is that mutations in the DHU arm of tRNA(2Arg) are compatible with, and in one case necessary for, frameshifting.  相似文献   

6.
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.  相似文献   

7.
Mutations in the suf9, suf10, and suf11 genes of yeast suppress + 1 nucleotide (nt) insertions in proline codons. Nucleotide sequence analysis indicates that the suf9 and suf11 genes are members of the proline tRNA(UGG) gene family, which also includes three other previously identified genes, suf7, suf8, and trn1. All five members of this gene family contain introns. The suf9 and suf11 introns are 31 and 30 nt in length, respectively, and are similar but not identical in sequence to other introns within the family. The suf10 gene is identical in sequence to suf2, which was shown previously to encode proline tRNA(IGG). Both members of this gene family lack introns. Alleles of suf9, suf10, and suf11 that confer frameshift suppression were also analyzed. The SUF9-1 allele results in a G----U substitution at nt position 39 in the anticodon stem. The recessive suf11-1 allele is a double mutant containing the same nt position 39 alteration as in SUF9-1 plus a second U----A substitution at nt position 38 in the anticodon loop. The SUF10-1 suppressor mutation corresponds to a +1G insertion in the anticodon loop. Since the nt substitutions in suf11-1 alter the sequence of the 3' exon/intron boundary, the double mutant pre-tRNA was tested for its ability to be cleaved in vitro by tRNA-splicing endonuclease. It was found that suf11-1 pre-tRNA is cleaved with reduced efficiency at the 3' splice junction.  相似文献   

8.
9.
A genetic approach to the molecular cloning of frameshift suppressor genes from yeast is described. These suppressors act by suppressing +1 G:C base-pair insertion mutations in glycine or proline codons. The cloning regimen involves an indirect screen for yeast transformants which harbor a functional suppressor gene inserted into the autonomously replicating “shuttle” vector YEp13, followed by transfer of the hybrid plasmid from yeast into Escherichia coli. Using this procedure a 10.7-kb DNA fragment carrying the SUF2 frameshift suppressor gene has been isolated. This suppressor acts specifically on +1 G:C insertions in proline codons. When inserted into an integrative vehicle and reintroduced into yeast by transformation, this fragment integrates by homologous recombination in the region of the SUF2 locus on chromosome III. A large proportion of the fragment overlaps with another cloned DNA segment which carries the closely linked CDC10 gene. The SUF2 fragment carries at least two tRNA genes. The SUF2 gene and one of the tRNA genes are located on a 0.85-kb restriction fragment within the 10.7-kb segment. A method is also described for the isolation of DNA fragments carrying alternative alleles of the SUF2 locus. Using this procedure, the wild-type suf2+ allele has been cloned.  相似文献   

10.
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.  相似文献   

11.
12.
To evaluate the role of exon domains in tRNA splicing, the anti-codon stem of proline pre-tRNAUGG from Saccharomyces cerevisiae was altered by site-directed mutagenesis of the suf8 gene. Sixteen alleles were constructed that encode mutant pre-tRNAs containing all possible base combinations in the last base pair of the anticodon stem adjacent to the anticodon loop (positions 31 and 39). The altered pre-tRNAs were screened by using an in vitro endonucleolytic cleavage assay to determine whether perturbations in secondary structure affect the intron excision reaction. The pre-tRNAs were cleaved efficiently whenever secondary structure in the anticodon stem was maintained through standard base pairing or G.U interactions. However, most of the pre-tRNAs with disrupted secondary structure were poor substrates for intron excision. We also determined the extent to which the suf8 alleles produce functional products in vivo. Each allele was integrated in one to three copies into a yeast chromosome or introduced on a high-copy-number plasmid by transformation. The formation of a functional product was assayed by the ability of each allele to suppress the +1 frameshift mutation his4-713 through four-base codon reading, as shown previously for the SUF8-1 suppressor allele. We found that alleles containing any standard base pair or G.U pair at position 31/39 in the anticodon stem failed to suppress his4-713. We could not assess in vivo splicing with these alleles because the tRNA products, even if they are made, would be expected to read a normal triplet rather than a quadruplet codon. However, all of the alleles that contained a disrupted base pair at position 31/ 39 in the anticodon stem altered the structure of the tRNA in a manner that caused frameshift suppression. Suppression indicated that splicing must have occurred to some extent in vivo even though most of the suppression alleles produced pre-tRNAs that were cleaved with low efficiency or not at all in vitro. These results have important implications for the interpretation of in vitro cleavage assays in general and for the potential use of suppressors to select mutations that affects tRNA splicing.  相似文献   

13.
The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5′ or 3′ direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5′ to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.  相似文献   

14.
Bacterial ribosomes stalled on defective mRNAs are rescued by tmRNA that functions as both tRNA and mRNA. The first ribosomal elongation cycle on tmRNA where tmRNA functions as tRNA is highly unusual: occupation of the ribosomal A site by tmRNA occurs without codon:anticodon pairing. Our analysis shows that in this case the role of a codon:anticodon duplex should be accomplished by a single unpaired triplet. In order that tmRNA could participate in the ribosomal elongation cycle, a triplet preceding the mRNA portion of tmRNA (the -1triplet) should be in the A-form and this form should be recognized by the ribosomal decoding center. A rule is derived that determines what triplets cannot be used as the -1triplet. The rule was tested with the -1triplets of all known 414 tmRNA species. All 23 observed -1triplets follow the formulated rule. The rule is also supported by the available data on base substitutions within the -1triplet.  相似文献   

15.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

16.
tRNA anticodon damage inflicted by the Kluyveromyces lactis γ-toxin underlies an RNA-based innate immune system that distinguishes self from nonself species. γ-toxin arrests the growth of Saccharomyces cerevisiae by incising a single phosphodiester 3' of the wobble base of tRNA(Glu(UUC)) to generate a break with 2',3'-cyclic phosphate and 5'-OH ends. Recombinant γ-toxin cleaves oligonucleotide substrates in vitro that mimic the anticodon stem-loop of tRNA(Glu). A single 2'-deoxy sugar substitution at the wobble nucleoside abolishes anticodon nuclease activity. To gain further insights to γ-toxin's substrate specificity, we tested deoxynucleoside effects at positions other than the site of transesterification. The results attest to a stringent requirement for a ribonucleoside at the uridine 5' of the wobble base. In contrast, every other nonwobble ribonucleoside in the anticodon loop can be replaced by a deoxy without significantly affecting γ-toxin's cleavage activity. Whereas either the 5' half or the 3' half of the anticodon stem can be replaced en bloc with DNA without a major effect, simultaneously replacing both strands with DNA interfered strongly, signifying that γ-toxin requires an A-form helical conformation of the anticodon stem. We purified γ-toxin mutants identified previously as nontoxic in vivo and gauged their anticodon nuclease activities in vitro. The results highlight Glu9 and Arg151 as candidate catalytic residues, along with His209 implicated previously. By analogy to other endoribonucleases, we speculate that γ-toxin drives transesterification by general acid-base catalysis (via His209 and Glu9) and transition-state stabilization (via Arg151).  相似文献   

17.
Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such “identity elements” are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of “anticodon shifts” to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation–based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.  相似文献   

18.
Anderson JC  Schultz PG 《Biochemistry》2003,42(32):9598-9608
Recently, it has been shown that an amber suppressor tRNA/aminoacyl-tRNA synthetase pair derived from the tyrosyl-tRNA synthetase of Methanococcus jannaschii can be used to genetically encode unnatural amino acids in response to the amber nonsense codon, TAG. However, we have been unable to modify this pair to decode either the opal nonsense codon, TGA, or the four-base codon, AGGA, limiting us to a 21 amino acid code. To overcome this limitation, we have adapted a leucyl-tRNA synthetase from Methanobacterium thermoautotrophicum and leucyl tRNA derived from Halobacterium sp. NRC-1 as an orthogonal tRNA-synthetase pair in Escherichia coli to decode amber (TAG), opal (TGA), and four-base (AGGA) codons. To improve the efficiency and selectivity of the suppressor tRNA, extensive mutagenesis was performed on the anticodon loop and acceptor stem. The two most significant criteria required for an efficient amber orthogonal suppressor tRNA are a CU(X)XXXAA anticodon loop and the lack of noncanonical or mismatched base pairs in the stem regions. These changes afford only weak suppression of TGA and AGGA. However, this information together with an analysis of sequence similarity of multiple native archaeal tRNA sequences led to efficient, orthogonal suppressors of opal codons and the four-base codon, AGGA. Ultimately, it should be possible to use these additional orthogonal pairs to genetically incorporate multiple unnatural amino acids into proteins.  相似文献   

19.
Primary structure of an unusual glycine tRNA UGA suppressor.   总被引:6,自引:1,他引:5       下载免费PDF全文
We have determined the nucleotide sequences of two UGA-suppressing glycine transfer RNAs. The suppressor tRNAs were previously shown to translate both UGA and UGG and to have arisen as a consequence of mutation in glyT, the gene for the GGA/G-reading glycine tRNA of Escherichia coli. In each mutant tRNA, the primary sequence change was the substitution of adenine for cytosine in the 3' position of the anticodon. In addition, a portion of mutant glyT tRNA molecules contained N6-(delta 2-isopentenyl)-2-thiomethyl adenine adjacent to the 3' end of the anticodon (nucleotide 37). The presence or absence of this hypermodification may be a determinant in some of the biological properties of the mutant tRNA.  相似文献   

20.
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号