首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Ascorbic acid is synthesized from galactono-gamma-lactone (GL) in plant tissues. An improved extraction procedure involving ammonium sulfate precipitation of membrane proteins from crude leaf homogenates yielded a simple, quick method for determining tissue activities of galactono-gamma-lactone dehydrogenase (GLDH). Total foliar ascorbate and GLDH activity decreased with leaf age. Subcellular fractionation experiments using marker enzymes demonstrated that 80% of the total GLDH activity was located on the inner mitochondrial membrane, and 20% in the microsomal fraction. Specific antibody raised against potato (Solanum tuberosum L.) tuber GLDH recognized a 56-kD polypeptide in extracts from the mitochondrial membranes but failed to detect the equivalent polypeptide in microsomes. We demonstrate that isolated intact mitochondria synthesize ascorbate in the presence of GL. GL stimulated mitochondrial electron transport rates. The respiration inhibitor antimycin A stimulated ascorbate biosynthesis, while cyanide inhibited both respiration and ascorbate production. GL-dependent oxygen uptake was observed in isolated intact mitochondria. This evidence suggests that GLDH delivers electrons to the mitochondrial electron transport chain between complexes III and IV.  相似文献   

2.
Summary The effects of the microtubular inhibitor, podophyllotoxin, on mitochondrial respiration were determined using isolated, digitonin-permeabilized hepatocytes and isolated mitochondria. In hepatocytes, podophyllotoxin (1.5 mM) inhibited coupled and uncoupled respiration of both FAD and NAD-linked substrates. In mitochondria, podophyllotoxin inhibited State III respiration, prevented the return to State IV respiration, and inhibited uncoupled respiration. There was no inhibition of ascorbate/TMPD oxidation in either the hepatocytes or the mitochondria. Podophyllotoxin had no effect upon oligomycin inhibition of coupled respiration. Oligomycin had no effect on the podophyllotoxin-inhibition of uncoupled respiration in either hepatocytes or mitochondria. The results indicate that podophyllotoxin alters electron flow at a site early in the electron transport chain.  相似文献   

3.
1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium.  相似文献   

4.
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4'-diisothiocyanatebiphenyl and beta-naphtylemthylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The incoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 muM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 degrees C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   

5.
Increased production of reactive oxygen species (ROS) by the mitochondrion has been implicated in the pathogenesis of numerous liver diseases. However, the exact sites of ROS production within liver mitochondria and the electron transport chain are still uncertain. To determine the sites of ROS generation in liver mitochondria we evaluated the ability of a variety of mitochondrial respiratory inhibitors to alter the steady state levels of ROS generated within the intact hepatocyte and in isolated mitochondria. Treatment with myxothiazol alone at concentrations that significantly inhibit respiration dramatically increased the steady-state levels of ROS in hepatocytes. Similar results were also observed in isolated mitochondria oxidizing succinate. Coincubation with antimycin or rotenone had no effect on myxothiazol-induced ROS levels. Myxothiazol stimulation of ROS was mitochondrial in origin as demonstrated by the colocalization of MitoTracker Red and dichlorofluorescein staining using confocal microscopy. Furthermore, diphenyliodonium, an inhibitor that blocks electron flow through the flavin mononucleotide of mitochondrial complex I and other flavoenzymes, significantly attenuated the myxothiazol-induced increase in hepatocyte ROS levels. Together, these data suggest that in addition to the ubiquinone-cytochrome bc(1) complex of complex III, several of the flavin-containing enzymes or iron-sulfur centers within the mitochondrial electron transport chain should also be considered sites of superoxide generation in liver mitochondria.  相似文献   

6.
Succinate dehydrogenase activity in mitochondria, which were isolated by centrifuging partially purified mitochondria through 1. 315 M sucrose, was completely suppressed when [14C]succinate uptake was abolished by prior incubation of the mitochondria with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and valinomycin. The conclusion that these mitochondria were intact was confirmed by the fact that, when these mitochondria were broken by a freeze-thaw cycle followed by sonication, such inhibition was totally abolished. The yield of mitochondria, microsomes, and peroxisomes from the initial homogenate was 17.8, <0.1, and 0%, respectively, indicating that the mitochondria were not only intact but also essentially free of contamination from microsomes and peroxisomes. The overt form of carnitine palmitoyltransferase (CPT I) in these intact and pure mitochondria was totally inhibited by malonyl CoA, indicating that previous reports of incomplete inhibition in mitochondrial preparations resulted from interference from CPT activity in the inner mitochondrial membrane (CPT II), microsomes, or peroxisomes.  相似文献   

7.
Kim CS  Lee CH  Lee PH  Han S 《Molecules and cells》2004,17(2):347-352
We examined the damage to mitochondrial electron transport caused by photosensitization of a pheophorbide a derivative, DH-I-180-3, shown recently to induce necrosis of lung carcinoma cells with low dark toxicity. Confocal microscopy showed that DH-I-180-3 co-localized with dihydrorhodamine-123 suggesting that it mainly accumulates in mitochondria. The photosensitizer alone in the dark did not affect mitochondrial electron transport. Illumination of isolated mitochondria in the presence of DH-I-180-3 resulted in inhibition of both NADH- and succinate-dependent respiration. Measurement of the activity of each component of the electron transport chain revealed that Complex I and III were very susceptible to the treatment whereas Complex IV was resistant. We conclude that the photosensitizer is localized in mitochondria and, upon illumination, produces reactive oxygen species that inactivate Complexes I and III.  相似文献   

8.
To evolve a simple oxygen electrode-based method to estimate alternative respiration, one needs to develop a procedure to prevent switch-over of electrons to either pathway upon inhibition by cyanide or salicylhydroxamic acid. It was hypothesized that the inclusion of appropriate electron acceptor, possessing redox potential close to one of the electron transport carriers in between ubiquinone (branch point) and cytochrome a-a3, should be able to stop switch-over of electrons to either pathway by working as an electron sink. To test the hypothesis, 2,6-dichloro-phenol indophenol (DCPIP; redox potential +0.217 V), an artificial electron acceptor having a redox potential quite similar to the site near cytochrome c1 (redox potential +0.22 V) on the cyanide-sensitive pathway, was used with isolated mitochondria and leaf discs in the absence and presence of inhibitors (potassium cyanide, antimycin A, and salicylhydroxamic acid). Polarographic data confirmed electron acceptance by DCPIP only from the inhibited (by cyanide or salicylhydroxamic acid) mitochondrial electron transport chain, hence preventing switch-over of electrons between the cyanide-sensitive and cyanide-insensitive pathway of respiration. Results with antimycin A and reduction status of DCPIP further confirmed electron acceptance by DCPIP from the mitochondrial electron transport chain. Possible implications of the results have been discussed.  相似文献   

9.
Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30–35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer''s disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.  相似文献   

10.
When Trypanosoma brucei procyclic trypomastigotes were permeabilized with digitonin in a reaction medium containing MgATP, succinate, and 3.5 microM free Ca2+, they lowered the medium Ca2+ concentration to the submicromolar level (0.05-0.1 microM), a range that correlates favorably with that detected in the intact cells with fura-2. The carbonyl cyanide p-trifluoromethoxyphenylhydrazone-insensitive Ca2+ uptake, certainly represented by the endoplasmic reticulum, was completely inhibited by 500 microM vanadate. When vanadate instead of carbonyl cyanide p-trifluoromethoxyphenylhydrazone was present, the Ca2+ set point was increased to 0.6-0.7 microM. The succinate dependence and carbonyl cyanide p-trifluoromethoxyphenylhydrazone sensitivity of the later Ca2+ uptake indicate that it may be exerted by the mitochondria. When bloodstream trypomastigotes were used, neither succinate nor alpha-glycerophosphate stimulated the mitochondrial Ca2+ uptake. The mitochondrial Ca2+ transport could be measured only in the presence of ATP and 500 microM vanadate to inhibit the endoplasmic reticulum uptake. Bloodstream trypomastigotes have a lower cytosolic Ca2+ concentration, as detected with fura-2 and a smaller extramitochondrial Ca2+ pool than procyclic trypomastigotes. Despite the presence of inositol phosphates, as determined by [3H]inositol incorporation, and the large extramitochondrial Ca2+ pool of procyclic trypomastigotes (61.7 nmol of Ca2+/mg of protein), no inositol 1,4,5-trisphosphate-sensitive Ca2+ release could be detected in these parasites.  相似文献   

11.
The effect of short-term treatment of rats with the synthetic glucocorticoid, dexamethasone, on mitochondrial oxidative phosphorylation has been examined. Treatment of rats for 3 h increased the oxidative capacity of the subsequently isolated mitochondria such that they displayed increased uncoupled and State 3 rates of respiration with NAD-linked substrates, succinate or durohydroquinone. The oxidation of ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine was unaffected. No change was apparent in the activity of a variety of dehydrogenase enzymes nor was there any increase in the mitochondrial content of cytochromes a, b, c1 or c. The uncoupler-dependent ATPase activity of the mitochondria was slightly enhanced following hormone treatment, but not the basal or the total ATPase activity measured in the presence of Triton X-100 plus Mg2+. The mitochondria prepared from dexamethasone-treated rats also displayed increased intramitochondrial concentrations of Mg2+, K+ and exchangeable adenine nucleotides but not Ca2+. It is suggested that the effect of glucocorticoids on mitochondrial respiration may be both the result of a direct activation of the respiratory chain within Complex III and an elevated intramitochondrial adenine nucleotide concentration. The evidence for the de novo synthesis of mitochondrial proteins which mediate the response remains inconclusive.  相似文献   

12.
Effects of the coenzyme Q analog (MitoQ10) carrying a positively charged decyltetraphenylphosphonium group on functional activity of phosphorylating liver mitochondria were studied. Using inhibitory analysis it was found that at micromolar concentrations this quinone is reduced by NADH-dependent DT-diaphorase. Under conditions of malate oxidation, MitoQ10 stimulates electron transfer from NADH to oxygen by shunting the block of rotenone-induced electron transport in Complex I. Steady-state mitochondrial respiration induced by rotenone and MitoQ10 (1 μM), as well as K3 shunt are both blocked by the DT-diaphorase inhibitor dicumarol, the Complex III inhibitor myxothiazole, and the cytochrome oxidase inhibitor cyanide. The electron transport chain induced in liver mitochondria by MitoQ10 in the presence of rotenone appears as follows: NADH → DT-diaphorase → MitoQ10 → Complex III → Complex IV → O2. Under conditions of malate (but not succinate) oxidation, MitoQ10 and high concentrations of vitamin K3 induce in mitochondria cyanide-resistant respiration and opening of the nonspecific pore eventually resulting in inhibition of oxidative phosphorylation. It is concluded that MitoQ10 should be regarded as an analog of hydrophilic quinones (vitamin K3, duroquinone, etc.) widely known as substrates for mitochondrial DT-diaphorase not interacting with CoQ10 rather than as a natural CoQ10 analog.  相似文献   

13.
We investigated the kinetics of the mitochondrial respiratory chain, proton leak, and phosphorylating subsystems of liver mitochondria from mannoheptulose-treated and control rats. Mannoheptulose treatment raises glucagon and lowers insulin; it had no effect on the kinetics of the mitochondrial proton leak or phosphorylating subsystems, but the respiratory chain from succinate to oxygen was stimulated. Previous attempts to detect any stimulation of cytochrome c oxidase by glucagon are shown by flux control analysis to have used inappropriate assay conditions. To investigate the site of stimulation of the respiratory chain we measured the relationship between the thermodynamic driving force and respiration rate for the span succinate to coenzyme Q, the cytochrome bc1 complex and cytochrome c oxidase. Hormone treatment of rats altered the kinetics of electron transport from succinate to coenzyme Q in subsequently isolated mitochondria and activated succinate dehydrogenase. The kinetics of electron transport through the cytochrome bc1 complex were not affected. Effects on cytochrome c oxidase were small or nonexistent.  相似文献   

14.
In eggs of the echiuroid Urechis unicinctus the respiration rate, which is not altered by fertilization, is inhibited by rotenone, antimycin A and cyanide. The respiration in echiuroid eggs is probably mediated by the mitochondrial respiratory chain. In fertilized eggs, the respiration was inhibited by oligomycin and stimulated by the uncouplers of oxidative phosphorylation 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone, whereas respiration in unfertilized eggs was insensitive to these compounds. Insemination increased the respiratory rate in eggs in the presence of uncouplers and reduced it in the presence of oligomycin. These findings suggest that the capacity of electron transport in mitochondira is elevated by fertilization but becomes latent on fertilization-induced coupling of respiration with oxidative phosphorylation. Strong stimulation of the respiration in unfertilized eggs was induced by dichlorophenol indophenol, phenazine methosulfate and tetramethyl p-phenylenediamine, suggesting possible sites at which electron transport is regulated in unfertilized eggs. The resulting stimulation of respiration in unfertilized eggs was insensitive to uncouplers and oligomycin, but became sensitive to them after fertilization simultaneously with considerable decrease in its rate. Fertilization-induced coupling of the respiration seemed to reduce the respiratory rate enhanced artificially by these redox compounds.  相似文献   

15.
Hepatic gluconeogenesis and mitochondrial function during hibernation   总被引:1,自引:0,他引:1  
1. The aim of these studies was to investigate a mitochondrial basis for changes in gluconeogenesis during hibernation. 2. State 3 respiration rates in liver mitochondria from hibernating ground squirrels were reduced by 62-66%. The limiting reaction appeared to be electron transport, particularly in respiratory complex III. 3. The mitochondrial ATP + ADP + AMP content was reduced by 29% during hibernation; cellular adenine nucleotide content was unchanged. 4. Pyruvate carboxylation in intact mitochondria was decreased 75% during hibernation, although total pyruvate carboxylase activity was not lower. 5. Rates of gluconeogenesis in intact hepatocytes isolated from hibernators were lower than in cells from non-hibernators.  相似文献   

16.
Ca2+ accumulation and endogenous respiration of sporulating Bacillus megaterium are inhibited to the same extent by electron-transport of inhibitors and the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting that Ca2+ is accumulated by an active transport process. Forespores isolated in stage V of sporulation demonstrated Ca2+-specific carrier-mediated Ca2+ uptake, consistent with downhill transfer [Hogarth & Ellar (1978) Biochem. J. 176, 197-203]. In the present studies forespore Ca2+ uptake was unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone and by concentrations of respiratory inhibitor that inhibited forespore endogenous respiration by 85%. These data suggest that Ca2+ enters the isolated forespore by facilitated diffusion. Ca2+ uptake into sporulating protoplasts was completely inhibited by concentrations of respiratory inhibitors that had no effect on either Ca2+ uptake or respiration of stage-V forespores, but which resulted in inhibition of mother-cell membrane NADH oxidase. These results indicate that the mother-cell membrane is a site for active transport of Ca2+ into the sporulating cell. The effects of the adenosine triphosphatase inhibitor dicyclohexylcarbodi-imide on mother-cell membrane adenosine triphosphatase, NADH oxidase and protoplast Ca2+ uptake were examined.  相似文献   

17.
1. The effect of cold exposure on the respiratory capacity of rat liver mitochondria has been studied using succinate as the substrate. 2. The mitochondria obtained in this study were well coupled, as shown by the RCR and ADP/O ratios. 3. In addition, durohydroquinone was used to eliminate the regulation of substrate supply. Likewise, we measured uncoupled respiration to evaluate the maximal electron flow through the respiratory chain. 4. We found that oxygen consumption using succinate or durohydroquinone + FCCP as substrates, as well as ATP production were not affected by cold exposure. 5. Our results also show that, when succinate is used, the maximal capacity of the respiratory chain is measured. 6. The data obtained do not support a role of the electron transport chain as a target of cold action.  相似文献   

18.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

19.
During early development of the sea urchin, the respiratory rate, enhanced upon fertilization, is maintained up to hatching (pre-hatching period) and then gradually increases to a maximum at the gastrula stage (post-gastrula period). Except for a short duration after fertilization, respiration in embryos is strongly inhibited by CN and antimycin A. During the whole span of early development, the amounts of proteins, cytochromes and the specific activities of cytochrome c oxidase and reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase in mitochondria are practically the same as in unfertilized eggs. A marked augmentation of mitochondrial respiration after hatching probably occurs without net increase in whole mitochondrial intrinsic capacities. Carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) or tetramethyl p-phenylenediamine (TMPD) enhances the respiratory rate in the pre-hatching period but hardly augments the respiration in the post-gastrula period. In the presence of both FCCP and TMPD, the respiratory rate in the pre-hatching period was as high as in the post-gastrula period. Probably, electron transport in the mitochondrial respiratory chain is regulated by acceptor control and limitation of cytochrome c reduction in the pre-hatching period and released from those regulations in the post-gastrula period. Acceptor control of respiration is experimentally reproduced in isolated mitochondria by making adenine nucleotide levels as those levels in the pre-hatching period.  相似文献   

20.
This study evaluated the action of tamoxifen and estradiol on the function of isolated liver mitochondria. We observed that although tamoxifen and estradiol per se did not affect mitochondrial complexes II, III, or IV, complex I is affected, this effect being more drastic (except for state 4 of respiration) when mitochondria were coincubated with both drugs. Furthermore, using two respiratory chain inhibitors, rotenone and diphenyliodonium chloride, we identified the flavin mononucleotide site of complex I as the target of tamoxifen and/or estradiol action(s). Tamoxifen (25 microm) per se induced a significant increase in hydrogen peroxide production and state 4 of respiration. Additionally, a significant decrease in respiratory control ratio, transmembrane, and depolarization potentials were observed. Estradiol per se decreased carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)-stimulated respiration, state 3 of respiration, and respiratory control ratio and increased lag phase of repolarization. With the exception of state 4 of respiration whose increase induced by tamoxifen was reversed by the presence of estradiol, the effects of tamoxifen were highly exacerbated when estradiol was present. We observed that 10 microm tamoxifen in the presence of estradiol affected mitochondria significantly by decreasing FCCP-stimulated respiration, state 3 of respiration, respiratory control ratio, and ADP depolarization and increasing the lag phase of repolarization. All of the deleterious effects induced by 25 microm tamoxifen were highly exacerbated in the presence of estradiol. Furthermore, we observed that the effects of both compounds were independent of estrogen receptors because the pure estrogen antagonist ICI 182,780 did not interfere with tamoxifen and/or estradiol detrimental effects. Altogether, our data provide a mechanistic explanation for the multiple cytotoxic effects of tamoxifen including its capacity to destroy tamoxifen-resistant breast cancer cells in the presence of estradiol. This new piece of information provides a basis for the development of new and promising anticancer therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号