首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heart ventricle myoglobin of bluefin tuna has been purified to an apparent homogeneity. The amino acid analysis has revealed only a limited number of substitutions between the myoglobins of yellowfin and bluefin tuna. The alpha-helix content of tuna myoglobin has been found considerably lower than that of mammalian myoglobin. No correlation has been discovered between the conformational stability and alpha-helix content. Denaturation experiments have shown that the whole structure of tuna myoglobin results from the interaction of two structural units which represent the product of independent folding processes. The structure of tuna myoglobin has been found more open and disorganized than that of sperm whale. This result has been related to the low content of electrostatic interactions and explained in terms of evolutive adaptations.  相似文献   

2.
E Bismuto  G Irace  E Gratton 《Biochemistry》1989,28(4):1508-1512
The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser. Data analysis was performed in terms of continuous distribution of lifetime having a Lorentzian shape. Data relative to sperm whale myoglobin, which possesses two tryptophanyl residues, i.e., Trp-A-5 and -A-12, provided a broad lifetime distribution including decay rates from a few picoseconds to about 10 ns. By contrast, the tryptophanyl lifetime distribution of tuna myoglobin, which contains only Trp-A-12, showed two well-separated and narrow Lorentzian components having centers at about 50 ps and 3.37 ns, respectively. In both cases, the chi 2 obtained from distribution analysis was lower than that provided by a fit using the sum of exponential components. The long-lived components present in the fluorescence decay of the two myoglobins do not correspond to any of those observed for the apoproteins at neutral pH. The tryptophanyl lifetime distribution of sperm whale apomyoglobin consists of two separated Lorentzian components centered at 2.25 and 5.4 ns, whereas that of tuna apomyoglobin consists of a single Lorentzian component, whose center is at 2.19 ns. Acidification of apomyoglobin to pH 3.5 produced a shift of the distribution centers toward longer lifetimes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Summary Myoglobins from rat, coho salmon (Oncorhynchus kisutch), buffalo sculpin (Enophrys bison) hearts, and yellowfin tuna (Thunnus albacares) red skeletal muscle were partially purified and their O2 binding affinities determined. Commercially prepared sperm whale myoglobin was employed as an internal standard. Tested at 20°C, myoglobins from salmon and sculpin bound O2 with lower affinity than myoglobins from the rat or sperm whale. Oxygen binding studies at 12°C and 37°C suggest that this difference is adaptive, permitting myoglobins from cold-adapted fish to function at physiologically relevant temperatures. Taken together, purification and O2 binding data obtained in this study reveal a previously unrecognized diversity of myoglobin structure and function.  相似文献   

4.
Myoglobin structure and regulation of solvent accessibility of heme pocket   总被引:1,自引:0,他引:1  
The effects of heme removal on the molecular structure of tuna and sperm whale myoglobin have been investigated by comparing the solvent accessibility to the heme pocket of the two proteins with that of the corresponding apoproteins. Although the heme microenvironment of tuna myoglobin is more polar than that of sperm whale myoglobin, the accessibility of solvent to heme is identical in the two proteins as revealed by thermal perturbation of Soret absorption. The removal of heme produces loss of helical folding and increase of solvent accessibility but the effects are rather different for the two proteins. More precisely, the loss of helical structure upon heme removal is 50% for tuna myoglobin and 15% for sperm whale myoglobin; moreover, the solvent accessibility of the heme pocket of tuna apomyoglobin is 2-3-fold greater than that of sperm whale apomyoglobin. These results have been explained in terms of the lack of helical folding in segment D, the structural organization of which may have a relevant effect in regulating the accessibility of ligands to the heme. The effects produced by charged quenchers reveal that the ligand path from the surface of the molecule to the ion atom of the heme involves a positively charged residue which may reasonably be identified as Arg-45 (sperm whale myoglobin) or Lys-41 (tuna myoglobin) on the basis of recent X-ray crystallographic information.  相似文献   

5.
E Bismuto  I Sirangelo  G Irace 《Biochemistry》1989,28(19):7542-7545
The extent of conformational substates of two apomyoglobins, i.e., sperm whale and tuna apomyoglobin, was investigated by examining the fluorescence decay in the frequency domain of the extrinsic fluorophore TNS [6-(p-toluidino)-2-naphthalenesulfonic acid] bound to the heme binding site. Data analysis was performed in terms of a continuous, unimodal lifetime distribution having a Lorentzian shape. The results were compared with those for the free fluorophore in an isotropic nonviscous solvent. The incorporation of TNS into the protein matrix resulted in a broadening of the lifetime distribution due to the microenvironmental heterogeneity generated by structural fluctuations. The larger width of lifetime distribution observed for TNS bound to tuna apomyoglobin was related to a more extended conformational space accessible to the fluorophore in this protein compared to sperm whale myoglobin. A temperature increase from 15 to 40 degrees C produced a further broadening of the lifetime distributions of TNS bound to both proteins. This result can be explained by assuming the existence of conformational substates at high energy content or separated by high energy barriers, which are not populated at low temperature. The overall picture emerging from the reported data is that the lifetime distributions of TNS bound to apomyoglobins are determined largely by the number of conformational substates accessible to the protein matrix and, to a lesser extent, by the interconversion rates among these states.  相似文献   

6.
Haem disorder in two myoglobins: comparison of reorientation rate.   总被引:1,自引:0,他引:1       下载免费PDF全文
The globins from sperm whale and from Aplysia limacina myoglobins were reconstituted by addition of stoichiometric ferric protohaem and the Soret c.d. was followed as a function of time. For both reconstituted proteins, the Soret c.d. changes with time, reflecting haem reorientation inside its pocket, as previously described [Aojula, Wilson & Drake (1986) Biochem. J. 237, 613-616] for sperm whale myoglobin. The time course of the c.d. transition is found to be approx. 10 times faster in Aplysia than in sperm whale myoglobin, a result which is in agreement with the known structural and physicochemical properties of the two myoglobins; furthermore, these results confirm that c.d. and n.m.r. data on haem orientation in haemoproteins reflect the same molecular phenomenon.  相似文献   

7.
The work in the literature on apomyoglobin is almost equally divided between horse and sperm whale myoglobins. The two proteins share high homology, show similar folding behavior, and it is often assumed that all folding phenomena found with one protein will also be found with the other. We report data at equilibrium showing that horse myoglobin was 2.1 kcal/mol less stable than sperm whale myoglobin at pH 5.0, and aggregated at high concentrations as measured by gel filtration and analytical ultracentrifugation experiments. The higher stability of sperm whale myoglobin was identified for both apo and holo forms, and was independent of pH from 5 to 8 and of the presence of sodium chloride. We also show that the substitution of sperm whale myoglobin residues Ala15 and Ala74 to Gly, the residues found at positions 15 and 74 in horse myoglobin, decreased the stability by 1.0 kcal/mol, indicating that helix propensity is an important component of the explanation for the difference in stability between the two proteins.  相似文献   

8.
1. The heart ventricle myoglobin of Atlantic bluefin tuna has been purified and its amino acid composition has been determined. 2. The perturbing effect of guanidine hydrochloride on the molecular structure of tuna ferrimyoglobin and its corresponding apoprotein has been investigated by Soret absorbance and ultraviolet fluorescence. 3. The conformation-free energy of unfolding delta G0 has been calculated by thermodynamic treatments of the data concerning guanidine unfolding. 4. The results have been compared with other known myoglobins, particularly those of yellowfin tuna.  相似文献   

9.
Myoglobins from three small placental mammals and one small marsupial were isolated from cardiac or skeletal muscle. The conformational free energies of these four myoglobins were estimated from guanidinium chloride unfolding data at pH 8 and 25 degrees. The myoglobins from rat and rabbit are more stable than that of the most stable myoglobin previously studied, that of the sperm whale. In addition, these two myoglobins unfold with greater cooperativity than previously characterized myoglobins. The data obtained herein demonstrate unequivocally for the first time that the stability of homeotherm myoglobins correlates with neither the size of the organism nor its metabolic rate.  相似文献   

10.
In this work we report the thermal behavior (10-300 K) of the Soret band lineshape of deoxy and carbonmonoxy derivatives of Asian elephant (Elephas maximus) and horse myoglobins together with their carbon monoxide recombination kinetics after flash photolysis; the results are compared to analogous data relative to sperm whale myoglobin. The Soret band profile is modeled as a Voigt function that accounts for the coupling with high and low frequency vibrational modes, while inhomogeneous broadening is taken into account with suitable distributions of purely electronic transition frequencies. This analysis makes it possible to isolate the various contributions to the overall lineshape that; in turn, give information on structural and dynamic properties of the systems studied. The optical spectroscopy data point out sizable differences between elephant myoglobin on one hand and horse and sperm whale myoglobins on the other. These differences, more pronounced in deoxy derivatives, involve both the structure and dynamics of the heme pocket; in particular, elephant myoglobin appears to be characterized by larger anharmonic contributions to soft modes than the other two proteins. Flash photolysis data are analyzed as sums of kinetic processes with temperature-dependent fractional amplitudes, characterized by discrete pre-exponentials and either discrete or distributed activation enthalpies. In the whole temperature range investigated the behavior of elephant myoglobin appears to be more complex than that of horse and sperm whale myoglobins, which is in agreement with the increased anharmonic contributions to soft modes found in the former protein. Thus, to satisfactorily fit the time courses for CO recombination to elephant myoglobin five distinct processes are needed, only one of which is populated over the whole temperature range investigated. The remarkable convergence and complementarity between optical spectroscopy and flash photolysis data confirms the utility of combining these two experimental techniques in order to gain new and deeper insights into the functional relevance of protein fluctuations.  相似文献   

11.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

12.
Monoclonal hybridoma antibodies specific for the protein antigen sperm whale myoglobin were produced using hyperimmune spleen cells from mice with the genetic trait of high responsiveness to myoglobin. Antibodies from the several clones tested were found to produce linear Scatchard plots, as predicted for homogeneous antibodies, and to possess high affinities for the immunogen (KA congruent to 10(9) M-1). None of the monoclonal antibodies tested reacted with either fragment (1-55) or fragment (132-153) of sperm whale myoglobin. Competitive binding assays using human and horse myoglobins suggested that several of these monoclonal antibodies, which can readily distinguish these myoglobins, recognize different antigenic determinants on the myoglobin molecule. Studies using additional myoglobin sequence variants as competitors should be able to more closely define these antigenic determinants.  相似文献   

13.
5,5-Dimethyl-1-pyrroline N-oxide (DMPO) spin trapping in conjunction with antibodies specific for the DMPO nitrone epitope was used on hydrogen peroxide-treated sperm whale and horse heart myoglobins to determine the site of protein nitrone adduct formation. The present study demonstrates that the sperm whale myoglobin tyrosyl radical, formed by hydrogen peroxide-dependent self-peroxidation, can either react with another tyrosyl radical, resulting in a dityrosine cross-linkage, or react with the spin trap DMPO to form a diamagnetic nitrone adduct. The reaction of sperm whale myoglobin with equimolar hydrogen peroxide resulted in the formation of a myoglobin dimer detectable by electrophoresis/protein staining. Addition of DMPO resulted in the trapping of the globin radical, which was detected by Western blot. The location of this adduct was demonstrated to be at tyrosine-103 by MS/MS and site-specific mutagenicity. Interestingly, formation of the myoglobin dimer, which is known to be formed primarily by cross-linkage of tyrosine-151, was inhibited by the addition of DMPO.  相似文献   

14.
The reaction of cyanide metmyoglobin with dithionite conforms to a two-step sequential mechanism with formation of an unstable intermediate, identified as cyanide bound ferrous myoglobin. This reaction was investigated by stopped-flow time resolved spectroscopy using different myoglobins, i.e. those from horse heart, Aplysia limacina buccal muscle, and three recombinant derivatives of sperm whale skeletal muscle myoglobin (Mb) (the wild type and two mutants). The myoglobins from horse and sperm whale (wild type) have in the distal position (E7) a histidyl residue, which is missing in A. limacina Mb as well as the two sperm whale mutants (E7 His----Gly and E7 His----Val). All these proteins in the reduced form display an extremely low affinity for cyanide at pH less than 10. The differences in spectroscopy and kinetics of the ferrous cyanide complex of these myoglobins indicate a role of the distal pocket on the properties of the complex. The two mutants of sperm whale Mb are characterized by a rate constant for the decay of the unstable intermediate much faster than that of the wild type, at all pH values explored. Therefore, we envisage a specific role of the distal His (E7) in controlling the rate of cyanide dissociation and also find that this effect depends on the protonation of a single ionizable group, with pK = 7.2, attributed to the E7 imidazole ring. The results on A. limacina Mb, which displays the slowest rate of cyanide dissociation, suggests that a considerable stabilizing effect can be exerted by Arg E10 which, according to Bolognesi et al. (Bolognesi, M., Coda, A., Frigerio, F., Gatti, C., Ascenzi, P., and Brunori, M. (1990) J. Mol. Biol. 213, 621-625), interacts inside the pocket with fluoride bound to the ferric heme iron. A mechanism of control for the rate of dissociation of cyanide from ferrous myoglobin, involving protonation of the bound anion, is discussed.  相似文献   

15.
Crystal have been grown of myoglobin produced in Escherichia coli from a synthetic gene, and the structure has been solved to 1.9 Å resolution. The space group of the crystals is P6, which is different from previously solved myoglobin crystal forms. The synthetic myoglobin is essentially identical to myoglobin isolated from sperm whale tissue, except for the retention of the initiator methionine at the N-terminus and the substitution of asparagine for aspartic acid at position 122. Superposition of the coordinates of native and synthetic sperm whale myoglobins reveals only minor changes in the positions of main chain atoms and roeientation of some surface side chains. Crystals of variant of the “synthetic” myoglobin have also been grown for structural analysis of the role of key amino acid residues in ligand and specificity.  相似文献   

16.
Native oxymyoglobin (MbO2) was isolated directly from the skeletal muscle of bigeye tuna (Thunnus obesus) with complete separation from metmyoglobin (metMb) on a CM-cellulose column. It was examined for its stability properties over a wide range of pH values (pH 5-12) in 0.1 M buffer at 25 degrees C. When compared with sperm whale MbO2 as a reference, the tuna MbO2 was found to be much more susceptible to autoxidation. Kinetic analysis has revealed that the rate constant for a nucleophilic displacement of O2- from MbO2 by an entering water molecule is 10-times higher than the corresponding value for sperm whale MbO2. The magnitude of the circular dichroism of bigeye tuna myoglobin at 222 nm was comparable to that of sperm whale myoglobin, but its hydropathy profile revealed the region corresponding to the distal side of the heme iron to be apparently less hydrophobic. The kinetic simulation also demonstrated that accessibility of the solvent water molecule to the heme pocket is clearly a key factor in the stability properties of the bound dioxygen.  相似文献   

17.
Overall association and dissociation rate constants were measured at 20 degrees C for O2, CO, and alkyl isocyanide binding to position 45 (CD3) mutants of pig and sperm whale myoglobins and to sperm whale myoglobin reconstituted with protoheme IX dimethyl ester. In pig myoglobin, Lys45(CD3) was replaced with Arg, His, Ser, and Glu; in sperm whale myoglobin, Arg45(CD3) was replaced with Ser and Gly. Intramolecular rebinding of NO, O2, and methyl isocyanide to Arg45, Ser45, Glu45, and Lys45(native) pig myoglobins was measured following 35-ps and 17-ns excitation pulses. The shorter, picosecond laser flash was used to examine ligand recombination from photochemically produced contact pairs, and the longer, nanosecond flash was used to measure the rebinding of ligands farther removed from the iron atom. Mutations at position 45 or esterification of the heme did not change significantly (less than or equal to 2-fold) the overall association rate constants for NO, CO, and O2 binding at room temperature. These data demonstrate unequivocally that Lys(Arg)45 makes little contribution to the outer kinetic barrier for the entry of diatomic gases into the distal pocket of myoglobin, a result that contradicts a variety of previous structural and theoretical interpretations. However, the rates of geminate recombination of NO and O2 and the affinity of myoglobin for O2 were dependent upon the basicity of residue 45. The series of substitutions Arg45, Lys45, Ser45, and Glu45 in pig myoglobin led to a 3-fold decrease in the initial rate for the intramolecular, picosecond rebinding of NO and 4-fold decrease in the geminate rate constant for the nanosecond rebinding of O2. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The titration behavior of individual tyrosine residues of myoglobins has been studied by observing the pH dependence of the chemical shifts of Czeta and Cgamma of these residues in natural abundance of 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes, at 37 degrees) of cyanoferrimyoglobins from sperm whale, horse, and red kangaroo. A comparison of the pH dependence of the spectra of the three proteins yielded specific assignments for the resonance of Tyr-151 (sperm whale) and Tyr-103 (sperm whale and horse). Selective proton decoupling yielded specific assignments for Czeta of Tyr-146 of the cyanoferrimyoglobins from horse and kangaroo, but not the corresponding assignment for sperm whale. The pH dependence of the chemical shifts indicated that only Tyr-151 and Tyr-103 are titratable tyrosine residues. Even at pH 12, Tyr-146 did not begin to titrate. The titration behavior of C zeta and Cgamma of Tyr-151 of sperm whale cyanoferrimyoglobin yielded a single pK value of 10.6. The pH dependence of the chemical shift of each of the resonances of Tyr-103 of the cyanoferrimyoglobins from horse and sperm whale could not be fitted with the use of a single pK value, but was consistent with two pK values (about 9.8 and 11.6). Furthermore, the resonances of Czeta and Cgamma of Tyr-103 broadened at high pH. The titration behavior of the tyrosines of sperm whale carbon monoxide myoglobin and horse ferrimyoglobin was also examined. A comparison of all the experimental results indicated that Tyr-151 is exposed to solvent, Tyr-146 is not exposed, and Tyr-103 exhibits intermediate behavior. These results for myoglobins in solution are consistent with expectations based on the crystal structure.  相似文献   

19.
Free radicals of myoglobins were measured at room temperature with an ESR spectrometer equipped with a flow apparatus. When horse heart MetMb was mixed with an equimolar amount of ethyl hydroperoxide (EtOOH), a well resolved ESR spectrum with 6 lines and a shoulder was observed. It reached a maximum in a few seconds and decayed with a half-life of about 10 s when the final concentrations of MetMb and EtOOH were 200 microM. This decay rate was the same at a MetMb concentration of 50 microM. The maximum molar radical concentration amounted to about half of the total myoglobin. In the case of sperm whale myoglobin, a similar 6-line spectrum reached a maximum in 1 s and decayed with a half-life of a few seconds. In this case, however, a small and poorly resolved doublet spectrum remained, the half-life of which was about 8 min. An effect of O2 on the signal decay was evident for horse heart myoglobin, but not for sperm whale myoglobin.  相似文献   

20.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号