首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient virus-induced gene silencing in Arabidopsis   总被引:2,自引:0,他引:2       下载免费PDF全文
Virus-induced gene silencing (VIGS) is a plant RNA-silencing technique that uses viral vectors carrying a fragment of a gene of interest to generate double-stranded RNA, which initiates the silencing of the target gene. Several viral vectors have been developed for VIGS and they have been successfully used in reverse genetics studies of a variety of processes occurring in plants. This approach has not been widely adopted for the model dicotyledonous species Arabidopsis (Arabidopsis thaliana), possibly because, until now, there has been no easy protocol for effective VIGS in this species. Here, we show that a widely used tobacco rattle virus-based VIGS vector can be used for silencing genes in Arabidopsis ecotype Columbia-0. The protocol involves agroinfiltration of VIGS vectors carrying fragments of genes of interest into seedlings at the two- to three-leaf stage and requires minimal modification of existing protocols for VIGS with tobacco rattle virus vectors in other species like Nicotiana benthamiana and tomato (Lycopersicon esculentum). The method described here gives efficient silencing in Arabidopsis ecotype Columbia-0. We show that VIGS can be used to silence genes involved in general metabolism and defense and it is also effective at knocking down expression of highly expressed transgenes. A marker system to monitor the progress and efficiency of VIGS is also described.  相似文献   

2.
Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.   总被引:11,自引:0,他引:11       下载免费PDF全文
In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.  相似文献   

3.
4.
The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a subset of maturation genes in leaves. Further, to investigate the relationship between SDG8 and the Polycomb Group (PcG) proteins, which are known to repress many developmentally important genes including seed maturation genes, double mutants were made and formation of somatic embryos was observed on mutant seedlings with mutations in both SDG8 and EMF2 (EMBRYONIC FLOWER 2). Analysis of histone methylation status at the chromatin sites of a number of maturation loci revealed a synergistic effect of emf2 and sdg8 on the deposition of the active histone mark which is the trimethylation of Lys4 on histone 3 (H3K4me3). This is consistent with high expression of these genes and formation of somatic embryos in the emf2 sdg8 double mutants. Interestingly, a double mutant of sdg8 and vrn2 (vernalization2), a paralogue of EMF2, grew and developed normally to maturity. These observations demonstrate a functional cooperative interplay between SDG8 and an EMF2-containing PcG complex in maintaining vegetative cell identity by repressing seed genes to promote seedling development. The work also indicates the functional specificities of PcG complexes in Arabidopsis.  相似文献   

5.
In higher plants, developmental phase changes are regulated by a complex gene network. Loss-of-function mutations in the EMBRYONIC FLOWER genes (EMF1 and EMF2) cause Arabidopsis to flower directly, bypassing vegetative shoot growth. This phenotype suggests that the EMF genes play a major role in repression of the reproductive program. Positional cloning of EMF2 revealed that it encodes a zinc finger protein similar to FERTILIZATION-INDEPENDENT SEED2 and VERNALIZATION2 of Arabidopsis. These genes are characterized as structural homologs of Suppressor of zeste 12 [Su(z)12], a novel Polycomb group gene currently identified in Drosophila. In situ hybridization studies have demonstrated that EMF2 RNA is found in developing embryos, in both the vegetative and the reproductive shoot meristems, and in lateral organ primordia. Transgenic suppression of EMF2 produced a spectrum of early-flowering phenotypes, including emf2 mutant-like phenotype. This result confirms the role of EMF2 in phase transitions by repressing reproductive development.  相似文献   

6.
Li W  Wang Z  Li J  Yang H  Cui S  Wang X  Ma L 《PloS one》2011,6(6):e21364
Polycomb group protein (PcG)-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT) and FLOWER LOCUS C (FLC). However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.  相似文献   

7.
8.
9.
10.
Plant microRNAs (miRNAs) affect only a small number of targets with high sequence complementarity, while animal miRNAs usually have hundreds of targets with limited complementarity. We used artificial miRNAs (amiRNAs) to determine whether the narrow action spectrum of natural plant miRNAs reflects only intrinsic properties of the plant miRNA machinery or whether it is also due to past selection against natural miRNAs with broader specificity. amiRNAs were designed to target individual genes or groups of endogenous genes. Like natural miRNAs, they had varying numbers of target mismatches. Previously determined parameters of target selection for natural miRNAs could accurately predict direct targets of amiRNAs. The specificity of amiRNAs, as deduced from genome-wide expression profiling, was as high as that of natural plant miRNAs, supporting the notion that extensive base pairing with targets is required for plant miRNA function. amiRNAs make an effective tool for specific gene silencing in plants, especially when several related, but not identical, target genes need to be downregulated. We demonstrate that amiRNAs are also active when expressed under tissue-specific or inducible promoters, with limited nonautonomous effects. The design principles for amiRNAs have been generalized and integrated into a Web-based tool (http://wmd.weigelworld.org).  相似文献   

11.
The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation.   总被引:3,自引:0,他引:3  
A screen for mutations affecting flower formation was carried out and several filamentous flower (fil) alleles were identified. In fil mutants, floral primordia occasionally give rise to pedicels lacking flowers at their ends. This defect is dramatically enhanced in fil rev double mutants, in which every floral primordium produces a flowerless pedicel. These data suggest that the FIL and REV genes are required for an early step of flower formation, possibly for the establishment of a flower-forming domain within the floral primordium. The FIL gene is also required for establishment of floral meristem identity and for flower development. During flower development, the FIL gene is required for floral organ formation in terms of the correct numbers and positions; correct spatial activity of the AGAMOUS, APETALA3, PISTILLATA and SUPERMAN genes; and floral organ development.  相似文献   

12.
Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.  相似文献   

13.
Chilling triggers rapid molecular responses that permit the maintenance of plant cell homeostasis and plant adaptation. Recent data showed that nitric oxide (NO) is involved in plant acclimation and tolerance to cold. The participation of NO in the early transduction of the cold signal in Arabidopsis thaliana was investigated. The production of NO after a short exposure to cold was assessed using the NO-sensitive fluorescent probe 4, 5-diamino fluoresceine diacetate and chemiluminescence. Pharmacological and genetic approaches were used to analyze NO sources and NO-mediated changes in cold-regulated gene expression, phosphatidic acid (PtdOH) synthesis and sphingolipid phosphorylation. NO production was detected after 1-4h of chilling. It was impaired in the nia1nia2 nitrate reductase mutant. Moreover, NO accumulation was not observed in H7 plants overexpressing the A. thaliana nonsymbiotic hemoglobin Arabidopsis haemoglobin 1 (AHb1). Cold-regulated gene expression was affected in nia1nia2 and H7 plants. The synthesis of PtdOH upon chilling was not modified by NO depletion. By contrast, the formation of phytosphingosine phosphate and ceramide phosphate, two phosphorylated sphingolipids that are transiently synthesized upon chilling, was negatively regulated by NO. Taken together, these data suggest a new function for NO as an intermediate in gene regulation and lipid-based signaling during cold transduction.  相似文献   

14.
15.
16.
17.
18.
Zhang Z  Chen H  Huang X  Xia R  Zhao Q  Lai J  Teng K  Li Y  Liang L  Du Q  Zhou X  Guo H  Xie Q 《The Plant cell》2011,23(1):273-288
Plant viruses are excellent tools for studying microbial-plant interactions as well as the complexities of host activities. Our study focuses on the role of C2 encoded by Beet severe curly top virus (BSCTV) in the virus-plant interaction. Using BSCTV C2 as bait in a yeast two-hybrid screen, a C2-interacting protein, S-adenosyl-methionine decarboxylase 1 (SAMDC1), was identified from an Arabidopsis thaliana cDNA library. The interaction was confirmed by an in vitro pull-down assay and a firefly luciferase complemention imaging assay in planta. Biochemical analysis further showed that the degradation of the SAMDC1 protein was inhibited by MG132, a 26S proteasome inhibitor, and that C2 could attenuate the degradation of the SAMDC1 protein. Genetic analysis showed that loss of function of SAMDC1 resulted in reduced susceptibility to BSCTV infection and reduced viral DNA accumulation, similar to the effect of BSCTV C2 deficiency. Bisulfite sequencing analysis further showed that C2 deficiency caused enhanced DNA methylation of the viral genome in infected plants. We also showed that C2 can suppress de novo methylation in the FWA transgenic assay in the C2 transgene background. Overexpression of SAMDC1 can mimic the suppressive activity of C2 against green fluorescent protein-directed silencing. These results suggest that C2 interferes with the host defense mechanism of DNA methylation-mediated gene silencing by attenuating the 26S proteasome-mediated degradation of SAMDC1.  相似文献   

19.
L1 retrotransposon-mediated stable gene silencing   总被引:3,自引:0,他引:3       下载免费PDF全文
RNA interference (RNAi) is widely used for functional studies and has been proposed as a potential therapeutic agent. Current RNAi systems are largely efficient, but have limitations including transient effect, the need for viral handling and potential insertional mutations. Here, we describe a simple L1 retrotransposon-based system for the delivery of small interfering RNA (siRNA) and stable silencing in human cells. This system demonstrated long-term siRNA expression and significant reduction in both exogenous and endogenous gene expression by up to 90%. Further characterization indicated that retrotransposition occurred in a controlled manner such that essentially only one RNAi-cassette was integrated into the host genome and was sufficient for strong interference. Our system provides a novel strategy for stable gene silencing that is easy and efficient, and it may have potential applications for ex vivo and in vivo molecular therapy.  相似文献   

20.
Cheng Y  Dai X  Zhao Y 《Plant physiology》2004,135(2):1020-1026
Auxin affects many aspects of plant growth and development. We previously used chemical genetics to dissect auxin-signaling mechanisms and identified a small molecule, sirtinol, that constitutively activated auxin signaling (Y. Zhao et al. [2003], Science 301: 1107-1110). Here we describe the isolation, characterization, and cloning of an Arabidopsis mutant Atcand1-1 that emerged from a genetic screen for mutants insensitive to sirtinol. Loss-of-function mutants of AtCAND1 were resistant to sirtinol and auxin, but not to gibberellins or brassinolide. Atcand1 displayed developmental phenotypes similar to those of axr1, namely, short petioles, downwardly curling leaves, short inflorescence, and reduced fertility. AtCAND1 is homologous to human CAND1, a protein that is composed almost entirely of HEAT-repeat units and has been implicated in regulating the assembly and disassembly of the SCF protein degradation machinery. Taken together with previous biochemical studies, this work helps to elucidate the roles of AtCAND1 in protein degradation and auxin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号